
Propelling SAT-based Debugging

using Reverse Domination

University of Toronto

Bao Le, Hratch Mangassarian, Brian Keng, Andreas

Veneris

Outline

• SAT-based Design Debugging

• Motivation and Previous Work
Introduction

• Dominators and Reverse Dominators

• Non-Solution Implications from Reverse
Domination Relationships

Non-Solution
Implications

• SAT Branching Scheme

• Non-Solution Detection

SAT Branching
Scheme for Early

Non-Solution
Learning

• Experimental Results
Results and Final

Remarks

Outline

• SAT-based Design Debugging

• Domination Relationships
Introduction

• Dominators and Reverse Dominators

• Non-Solution Implications from Reverse
Domination Relationships

Non-Solution
Implications

• SAT Branching Scheme

• Non-Solution Detection

SAT Branching
Scheme for Early

Non-Solution
Learning

• Experimental Results
Results and Final

Remarks

SAT-based Design Debugging

Given an erroneous circuit, a counter example of length 𝑘, and error
cardinality 𝑁:

 Goal: Return shortlist of potentially buggy RTL blocks (solutions)

 Blocks that can be modified to fix counter-example

 Procedure:

 An error-select variable 𝑒𝑖 is inserted at the outputs of each RTL block.

 𝑒𝑖 = 1 disconnects block from fan-ins, making its outputs free variables

 𝑒𝑖 = 0 does not modify the circuit

 Enhanced circuit is replicated 𝑘 times using time-frame expansion.

 Initial state, primary inputs and outputs are constrained to expected behavior of
counter-example.

 Each satisfying assignment to 𝑒 = {𝑒1, … , 𝑒𝑛} is a debugging solution

 The SAT solver must find all such assignments to 𝑒 using blocking clauses.

SAT-based Design Debugging

 Example:

g1

g2

b1

b2
b3

b4

x1
x2

x3

x4

g3

g4

y2

y1

SAT-based Design Debugging

g1

g2

b1

b2
b3

b4

x1
x2

x3

x4

g3

g4 y2 y1

g1

g2

b1

b2
b3

b4

x1
x2

x3

x4

g3

g4 y1

Time-frame 1

Time-frame 2

1

0

1

1
1

0
0

0

1

1

1

y2

0
e1

e2

e1

e3

e4

e1 e4

e3

e2

SAT Solver returns 𝑒4 = 1 for 𝑁 = 1; therefore, block 𝑏4

(i.e. gate 𝑔3) is the bug.

SAT-based Design Debugging

 SAT-based Design Debugging

 Fault diagnosis and logic debugging using Boolean Satisfiability

[Smith, Veneris, Ali, Viglas-TCAD2005]

 Large designs, long counter-examples pose a scalability

challenge even to modern SAT solvers.

 Our contributions:

 On-the-fly discovery of implied non-solution blocks using

reverse domination

 Goal is to prune the search space of design debugging

 1.7x speed up in SAT solving time.

Outline

• SAT-based Design Debugging

• Motivation and Previous Work
Introduction

• Dominators and Reverse Dominators

• Non-Solution Implications from Reverse
Domination Relationships

Non-Solution
Implications

• SAT Branching Scheme

• Non-Solution Detection

SAT Branching
Scheme for Early

Non-Solution
Learning

• Experimental Results
Results and Final

Remarks

Outline

• SAT-based Design Debugging

• Motivation and Previous Work
Introduction

• Dominators and Reverse Dominators

• Non-Solution Implications from Reverse
Domination Relationships

Non-Solution
Implications

• SAT Branching Scheme

• Non-Solution Detection

SAT Branching
Scheme for Early

Non-Solution
Learning

• Experimental Results
Results and Final

Remarks

Dominators

 Block 𝑏𝑗 is said to dominate block 𝑏𝑖 if any path from a node in

𝑏𝑖 to a primary output passes through a node in 𝑏𝑗.

b1

b2
b3

b4

Dominators

 Block 𝑏𝑗 is said to dominate block 𝑏𝑖 if any path from a node in

𝑏𝑖 to a primary output passes through a node in 𝑏𝑗.

b1

b2
b3

b4

Dominators

 Block 𝑏𝑗 is said to dominate block 𝑏𝑖 if any path from a node in

𝑏𝑖 to a primary output passes through a node in 𝑏𝑗.

b1

b2
b3

b4

b4 dominates b1

 Theorem [Mangassarian, Veneris, Smith, Safarpour-ICCAD’11]:

 If 𝑏𝑗 is a solution block, and 𝑏𝑖
dominates 𝑏𝑗, then 𝑏𝑖 is also a solution

block

Dominators

 Block 𝑏𝑗 is said to dominate block 𝑏𝑖 if any path from a node in

𝑏𝑖 to a primary output passes through a node in 𝑏𝑗.

b1

b2
b3

b4

No block dominates b2

Reverse Dominators

 A block 𝑏𝑖 is a reverse dominator of block 𝑏𝑗 if and

only if 𝑏𝑗 dominates 𝑏𝑖, denotes 𝑏𝑖𝐷
-1𝑏𝑗.

Block b1 is a reverse dominator of b4

b1

b2
b3

b4

Non-solution Implications

 Theorem:

 If 𝑏𝑗 is a non-solution block, and 𝑏𝑖𝐷
-1𝑏𝑗, then 𝑏𝑖 is also a non-solution

block

Definition: Block 𝑏𝑖 is a non-solution block iff 𝑒𝑖 = 0 for all satisfying assignments.

If b4 is a non-solution block,

b1 is also a non-solution block.

But how would we know that b4 is a

non-solution in the first place?

b1

b2
b3

b4

Outline

• SAT-based Design Debugging

• Motivation and Previous Work
Introduction

• Dominators and Reverse Dominators

• Non-Solution Implications from Reverse
Domination Relationships

Non-Solution
Implications

• SAT Branching Scheme

• Non-Solution Detection

SAT Branching
Scheme for Early

Non-Solution
Learning

• Experimental Results
Results and Final

Remarks

Outline

• SAT-based Design Debugging

• Motivation and Previous Work
Introduction

• Dominators and Reverse Dominators

• Non-Solution Implications from Reverse
Domination Relationships

Non-Solution
Implications

• SAT Branching Scheme

• Non-Solution Detection

SAT Branching
Scheme for Early

Non-Solution
Learning

• Experimental Results
Results and Final

Remarks

SAT Branching Scheme

 A decision tree in a SAT solver gives the order in which

variables are decided upon. Consider the decision tree:

UNSAT

r

r = 1

SAT Branching Scheme

 A decision tree in a SAT solver gives the order in which

variables are decided upon. Consider the decision tree:

UNSAT

r

r = 1

r = 0 for all satisfying assignment

SAT Branching Scheme

 A decision tree in a SAT solver gives the order in which

variables are decided upon. Consider the decision tree:

UNSAT

r

r = 1

r = 0 for all satisfying assignment

If after analyzing r = 1, SAT Solver returns no satisfying

assignment and starts analyzing r = 0, clearly r = 0 for any

satisfying assignment (if one exists).

Non-Solution Detection

 What we have so far:

UNSAT

r

r = 1

Non-Solution Detection

 What about:

UNSAT

ei

ei = 1

ei = 0 for all satisfying assignments

bi is a non-solution block.

Non-Solution Detection

 In general, we can incrementally detect non-solution blocks. For

example:

UNSAT

e1

e1 = 1

UNSAT

UNSAT

e2

ei

ei = 1

• 𝑒2, … 𝑒𝑖 are also detected as non-solution blocks even though they

are not the root of the decision tree.

e2 = 1

𝑒1 = 0 for all satisfying assignment

𝑒𝑖 = 0 for all satisfying assignment

𝑒2 = 0 for all satisfying assignment

Non-Solution Detection

 Deciding on the error-select variables first forces the

SAT solver to learn about them faster

 Pruning using non-solution implications can have a

stronger effect

Algorithm Overview

 Rearrange the order such that error select variables

𝑒 appear first in the decision tree.

 Extract learned non-solution blocks by inspecting the

decision tree.

 Use reverse domination relationships to learn more

non-solution blocks. Add a blocking clause for each

implied non-solution block.

Outline

• SAT-based Design Debugging

• Motivation and Previous Work
Introduction

• Dominators and Reverse Dominators

• Non-Solution Implications from Reverse
Domination Relationships

Non-Solution
Implications

• SAT Branching Scheme

• Non-Solution Detection

SAT Branching
Scheme for Early

Non-Solution
Learning

• Experimental Results
Results and Final

Remarks

Outline

• SAT-based Design Debugging

• Motivation and Previous Work
Introduction

• Dominators and Reverse Dominators

• Non-Solution Implications from Reverse
Domination Relationships

Non-Solution
Implications

• SAT Branching Scheme

• Non-Solution Detection

SAT Branching
Scheme for Early

Non-Solution
Learning

• Experimental Results
Results and Final

Remarks

Experimental Results

 Platform: i5 3.1Ghz, 8GB memory, 2 hour time-limit.

 Benchmarks: Eight Opencores circuits and three industrial
designs. For each, several bugs are injected to generate
debugging instances.

 We modified MiniSAT 2.2.0 to implement our techniques.

 MiniSAT vs. dbgSAT

 We compare to a state-of-the-art SAT-based debugger with
solution implications [Mangassarian, etal-ICCAD’11]:

Experimental Results
Instance # of Nodes MiniSAT(s) Non-Sol(%) dbgSAT(s) Imp(x)

rsdecoder1 13543 T/O 74% 6955.90 ∞

rsdecoder2 13564 33.35 58% 20.46 1.6x

usb_funct1 35158 53.17 21% 45.46 1.2x

usb_funct2 35350 134.46 32% 117.83 1.1x

wb_dma1 191386 123.89 28% 97.26 1.3x

wb_dma2 299838 49.14 41% 36.90 1.3x

wb_dma3 299862 304.18 61% 182.09 1.7x

vga1 89412 434.81 13% 172.51 2.5x

vga2 89402 106.98 8.1% 147.95 0.7x

ucrc_par 1056 7.97 0% 3.94 2.0x

mem_ctrl1 48006 12.53 17% 24.67 0.5x

mem_ctrl2 48006 11.76 0% 4.78 2.5x

mips7891 30711 22.08 6% 13.51 1.6x

On average, 28% of non-

Solution blocks are implied

For rsdecoder, while MiniSAT

times out, we are able to

solve it in under two hours.

For certain cases, only

rearranging the order of

variables improves the

performance

Experimental Results
Instance # of Nodes MiniSAT Non-Sol(%) dbgSAT Imp(x)

open_sparc1 58399 48.45 44% 33.42 1.4x

open_sparc2 64915 44.11 50% 39.39 1.1x

Design1-1 499325 53.40 0.1% 25.08 2.1x

Design1-2 499705 72.54 25% 38.27 1.9x

Design1-3 499696 39.63 1% 31.69 1.3x

Design1-4 499705 100.89 29% 45.69 2.2x

Design1-5 499705 73.72 29% 27.04 2.7x

Design2-1 45632 18.47 10% 14.59 1.3x

Design2-2 203706 7.38 0.7% 4.23 1.7x

Design2-3 2082 0.13 53% 0.08 1.6x

Design3-1 5454 3.03 51% 2.07 1.6x

Design3-2 2333 0.083 44% 0.07 1.2x

Average 1.68x

23/25 cases show improvement

Experimental Results

By pruning the search space for

each SAT call, each SAT call now

takes less time and hence we are

able to find more solutions faster.

Conclusions

 Summary

 Non-solution implications using reverse domination to prune the
search space of design debugging SAT calls.

 A SAT branching scheme to detect non-solution early and enhance
non-solution implications.

 Future Work

 Study the error-select variables’ order to maximize the implications
(solution + non-solution).

 Extend the work to higher cardinality.

Questions/Discussions

