
Treating Constraints

as Components:

An Experiment in User Control

Dr Carl Seger

Senior Principal Engineer

Intel Corporation

Nov. 10, 2011

1

Outline

 Background & Motivation

 Integrated Design and Verification System

 Property Handling in IDV

 Examples of Transformations using Properties

 Larger Design Example

 Conclusions & Future Work

2

Motivation

3

4

Original

Product

Target

Architect
Micro-

Architect

Design

Engineer

Mask

Designer

Test

Engineer

MAS Schematics Layout/

Mask

RTL

The Design Process at 10,000 ft

Architecture

Analysis

Development

of micro-

architecture

Mapping

of RTL to

transistors

Development

of mask

that yield

transistors

and wires

Making Silicon

+

Stepping(s)

Chip

This is the theory…

Ideas

Validation

MAS: Micro-Architecture Specification

RTL: Register-Transfer Language

5

In Practice…

Original

Product

Target

~2-3 years ~1 year

Test

Engineer Mask

Designer

Design

Engineer

Micro-

Architect

Architect

Target

Repainted

to fit

Reality

6

Validation

Original
Product
Target

MAS Schematics Layout/

Mask

RTL

Architecture

Analysis

Development

of micro-

architecture

Mapping

of RTL to

transistors

Development

of mask

that yield

transistors

and wires

Making Silicon

+

Stepping(s)

Chip

Validation

How to: 1) check we captured what we wanted
 2) check that we did not make a mistake along the way

7

What Needs to be Validated?

 Functionality

 Performance

 Power & Thermal

 Physical form

 Documentation

 Reliability

 Testing procedure

 …

+ ? ?

Goal

Actual

Logic Validation Brick Wall

Verification killing schedules

Source:* 2002 Collett International Research & Synopsys

1
s
t s

il
ic

o
n

 s
u

c
c
e
s
s

N. America Re-spin Statistics

71% of SoC re-spins

due to logic bugs

1999 2002 2004

39% 44% 48%

Without major breakthroughs, verification will be
a non-scalable, show-stopping barrier to further
progress in the semiconductor industry
 THE INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS: 2005/6

Bugs found too late

 Incoming bugs (5 wks AVG)

0

10

20

30

40

50

60

70

80

WW before TO

#
 o

f
b

u
g

s

BUG BET

Too many pre-Si bugs!

Simulation less efficient

Source: Valeria Bertacco, Univ. of Michigan

Validation is now

limiting new features.

Integrated Design & Verification

9

Two Classes of Bugs:

10

 Specification bugs

 “What” is captured incorrectly

- Unintended interactions

- Deadlocks & Livelocks

 Implementation bugs

 “How” is captured incorrectly

- Incorrect optimization of algorithm

- Misunderstanding of algorithm

- Bug “fix” with unintended effects

 Note:

 The more abstract the specification is, the
more implementation bugs (and vice versa).

 Anecdotal evidence indicate that the more
abstract specification, the fewer total bugs

Abstraction Level

Im
p

le
m

e
n

ta
ti

o
n

 b
u

g
s

S
p

e
c

if
ic

a
ti

o
n

 b
u

g
s

11

Real problem:

 How to go from:

 to:

•Quickly

•Correctly

•Meeting timing goals

•Meeting area goals

•Meeting power goals

•Meeting manufacturability goals

•…

12

Today's Approach

HLM 50k

RTL

Schematics

FEV

Validation

200k

Layout

FEV

rewrite

evolve/redo

RTL

Schematics

FEV

Validation

300k

Layout evolve/redo

FEV

rewrite

evolve/redo

RTL

Schematics

FEV

Validation

3M

Layout evolve/redo

FEV

13

A Different Approach: Integrated

Design and Verification (IDV)

HLM

Validation

M1

 Transformation step

M2

M4

M3

 Verification step

M5

Design

Tool guarantees that

only valid transformations

and/or verification steps

are performed

50k

When design is

completed, so is its

impl. verification.

Design in IDV

 Since IDV bridges HLM to symbolic layout, design activities inside IDV
occur at several levels:

 High-level algorithmic refinements, e.g.

 change an algorithm from “simple to write and validate” to an algorithm that
“can be implemented efficiently in silicon”

 Mid-level (implementation) refinements, e.g.

 change an “a+b” component to an efficient (power/area/timing) gate
implementation

 Low-level (physical) refinements, e.g.

 placement directives, pre-routes, slope management by buffer insertions
and/or mapping to different cells

15

High-Level Algorithmic Design

16

17

Example of Algorithmic Design

 Task: Split a chain of 9 49-bit adders into two chains; one for
the higher bits and one for the lower bits

Specification

18

Step 1: Group adders

19

Step 2: Insert high-low adder in

each input wire

 Use FEV to verify e.g. that a[48:0]=a[48:33]*233+a[32:0]

20

Step 3: Group high-low splitters

21

Step 4: Unfold adders and using

associativity transform, make tree

into single left-spine of adders

22

Step 5: Use FEV to verify the small

transformation (swap arguments):

23

Step 6: Let IDV repeatedly apply

this transformation to yield*:

 Where green is high-bits, purple is low-bits and yellow is
merge-addition

* Somewhat simplified. Some extra “guidance” is needed to create the desired result.

24

Step 7: Finally group the different

pieces to get:

Mid-Level Design

25

26

Mid-Level Design in IDV

 Problem: Subtraction and negation in series!

Specification

27

Step 1: Make new design and FEV

immediately against spec.

28

Step 2: Design one subtractor from

adder and find-and-replace to find

every occurrence

29

Step 3: Get a suitable adder candidate

from library (speed, power, area, …)

and use find-and-replace again

30

Step 4: Use pocket-synthesis to

implement remaining logic

31

Step 5: and run FEV on the result

before using it inside IDV

32

This yields

33

Step 6: Perform constant

propagation yielding

34

Step 7: Size the cells based on

timing/power/area requirements.

35

Step 8: After converging choose cells

according to sizer and the mid-level

design phase is over

Low-Level Physical Design

36

37

Low-level/Physical Design in IDV

Specification

38

Step 1: Split into bit-slices

39

Step 2: Select the private fanin-cone,

i.e., logic feeding only this output

40

Step 3: Push into the single bit

41

Step 4: Design one bit slice (both

mapping to cells & sizing)

42

Step 5: Start placing the cells

43

Step 6: Finish placing the single

bit-slice

44

Step 7: Save transformation and use it

in a find-and-replace operation

45

Step 8: Place the bit-slices according

to output wire name and auto-place

the decoder logic.

Property Handling in IDV

46

Properties

 Taking advantage of properties in the design process is often critical to
reach a desired outcome

 E.g., complex logic can be drastically simplified if some property is known to hold

 Two types of properties:

 Assumptions

- E.g., ”these inputs will always be mutually exclusive”

 Don’t cares:

- E.g., “the result will never be used if the valid bit is false”

 Properties are often treated as second class citizens

 Managed in different languages, maintained differently, verified correct/valid only
late in the design process, etc.

 Many synthesis tools can only take advantage of “local” properties (if any!)

- E.g., properties stated/proven several pipe stages away are rarely (ever?) visible/used by
synthesis tools.

47

Assumptions in IDV

 Assumptions are treated exactly the same as hardware components.

 An assumption is a finite state machine with some inputs and a “ok” signal.

 Modeled as a combinational assertion together with some extra latches/flops and
logic to create a checker.

 Assumptions are visualized with the corresponding logic and can be transformed
like other components, e.g., they can be:

- Duplicated

- Moved in the design hierarchy

- Retimed either forward or backwards (usual restrictions)

 Refinement verification both uses and verifies all properties in a spec/imp pair.

 Assumptions come from two main sources:

 In the original HLM capturing the environment (input assumptions)

 Implied from up-streams logic

 Assumptions can be added either manually or computed (semi-)
automatically

48

Example

49

Select Logic Implying Property

50

Add a Property Manually

51

Verify the Validity of Property

52

Replace Originally Selected Logic

With Same Logic + Property

53

Select Property and Click on

“Duplicate Logic”

54

Now Select Property and Click on

“Retime Forward”

55

Result

56

Now Select New Block and

Repeat Complete Process

57

Result

58

Finally use Property to

Drastically Simplify Design

59

Final Result

60

Automation Can Also be Used:

61

Automatically Computed Property

62

Where:

63

=

Care Properties

 Since IDV uses (qua)ternary logic in refinement verification,
output cares are modeled using “tri-state drivers”

 E.g., output is “X” when care condition is false.

 As with properties, the basic care component is combinational. Extra
circuit is used to create sequential care properties.

 Care properties have two major sources:

 Initially in the HLM

- Requires diligence to actually state them!

 Implied by down-stream logic

- Written by hand & verified or computed automatically using formal methods.

 Care properties can be added/moved/… like hardware
components and the verify tool understands and checks
correctness.

64

Circuit with Explicit Care

65

Combine Explicit Care with

Implied Care (verified!)

66

Retime Care Backwards

67

Use Care to Introduce Clock

Gating (Sequential FEV)

68

Final Stage Clock Gated

69

Move Care Backwards Through

Combinational Logic

70

Final Result

71

72

Realistic Examples

Integer Execution Unit in Core

 RTL: ~3,000 lines with focus on HOW

 HLM: ~300 lines with focus on WHAT

 Two implementations derived inside
IDV

1. To the existing implementation

2. New version using a different algorithm
and partitioning

 New version 20% smaller than original
version

 Both versions provably equal to HLM
and thus HLM validation was shared.

300 line HLM

Graphics execution unit
HLM -> Placed cells
2k lines of code + 20 pages tables

HLM

Graphics Execution Unit

Front

(4 multipliers)

Accumulator

Control & decoder Back

(dot+4 rnd)

High-level specification

New implementation algorithm ideas
#

17 16 15 14 13 12

17 16 15 14 13 12 11 10

17 16 15 14 13 12 11 10 9 8

17 16 15 14 13 12 11 10 9 8 7 6

15 14 13 12 11 10 9 8 7 6 5 4

15 14 13 12 11 10 9 8 7 6 5 4 3 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 inc6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 inc7

inc8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
75

1

Front:

1: Control decoding and data alignment

2: Partial products and CSA tree

3: CPA adder and (re-)assembly

2 3 4 5 6 8 9

Back:

4: FP-adder part 1

5: FP-adder part 2

6: Dot product

7: Rounder part 1

8: Rounder part 2

9: Rounder part 3 + re-assembly

100

Outside FPU:

≤0: Read from register file and send data

≥10: Send data back to register file and write

7

gclk

clk
dt_latchopen

dt_latchclosed

R
e
a

d

W
rite

FPU pipelineFPU pipeline

A
c

c
u

m
u

la
to

r

Design and
verification
in IDV Final placed result

~120,000 gates
Converged to meet timing
& area

Communication Link Between

Interconnect and Cache in “Uncore”

SCLC. Seger - Intel Confidential 19

Early Design: HLM to netlist

SSCCLLC. Seger - Intel Confidential 24

Logic And Physical ViewLogic And Physical View

SCLC. Seger - Intel Confidential 17

Top-level HLM Entry

4k to 12k lines
of HLM during

13 months

SSCCLLC. Seger - Intel Confidential 29

Final Design Sent to RouterFinal Design Sent to Router

Clock spineClock spine

KeepoutKeepout regionregion

RF RF EBBsEBBs

CAM EBBCAM EBB

130,000 trans.
(2 RF + 1 CAM)

Converged to product status

Bottom line: During 13 months of design effort, no HLM changes

were needed because of implementation considerations.

Original input buffer

 1 designer

 12 FUBs

 2 RF, 1 CAM EBB

In production flow for

more than 1 year

76

Conclusions and Future Work

Experience in Handling Properties

Like Hardware Components.

 Pros:

 Automatically manage properties (e.g., wire renaming gets done the
same for flops as properties!)

 Make properties highly visible and explicit

 Formalizes many “hand waving” arguments (and finds quite a few bugs!)

 Ensures property verification gets the same priority as design verification!

 Cons:

 Sometimes very tedious to manage

- E.g., forgetting to duplicate a property used in a replacement!

 “Global” properties are difficult to use/move around

 Difficult to deal with for backend tools

- Properties will eventually “disappear” since they will not result in any transistors on
the chip!

77

Pros with an IDV Methodology

 Direct benefits:

 Bugs about to be introduced during the design process will be caught immediately

- "Goofs" (e.g., cut-and-paste errors)

- Design complexity bugs, e.g., performance artifacts (speculation, re-timing, power-down),
testability, etc.

 No need to re-write the model to be “synthesis friendly” and (unintentionally)
introduce bugs.

 Indirect benefits:

 HLM much smaller and simpler than today's RTL

- Can be written and maintained by a few people

- Allows significantly faster simulation (DV)

- Is a much better target for formal property verification

 HLM much more stable

- Can make emulation much more attractive

 Same HLM can be refined to different implementations with different tradeoffs

- Ideal in a System-On-Chip design environment

Cons with an IDV Methodology

 New role that require significant training and/or changed mindset:

 Designers don’t know validation

 Validators don’t know how to design

 Reacting to changes in the HLM can be tedious and require
significant re-work

 Difficult to make use of “global” properties and don’t cares.

 Truly high-level models require significant FV expertise to refine &
verify to abstract RTL

 Danger of “video-game” design:

 Making large number of refinements & transformations without really
converging towards a viable design.

- My record is ~210 transformations to get back to where I started!

Open Questions

 What is the right level of a High-Level Model?

 It’s not really a question of language (although a good/bad
language can help/hinder abstraction)

 How can a truly abstract model be used for other purposes than
logic specification?

- High-level models are needed for many non-logic purposes!

 What is the right refinement relation?

 Tradeoff between flexibility and difficulty verifying.

 What is the best way of capturing “design intent” so that
the process is captured, not only the end result.

 …

80

Thank You!

Questions?

81

82

Example of High-Level

Transformations

 Basic arithmetic facts: E.g., a+(b+c)=(a+b)+c.

 Verified through FEV for every size and stored in database

83

High Level Transformations

 Complex transformations: E.g., a*(b+c)=a*b+a*c

 Verified through a sequence of IDV transformations

 Sequence captured in reFLect program and result for every
size stored in database

