
1

Towards Proving
TLM Properties with
Local Variables

Hoang M. Le

Daniel Große*

Rolf Drechsler

University of Bremen, Germany

grosse@informatik.uni-bremen.de

2

Outline

• Motivation

• SystemC

• TLM Property Checking

• TLM Properties with Local Variables

• Experimental Results

• Conclusions

3

Motivation

• ESL design

• Correctness of the initial TLM model

 Deadlock-freedom, local assertions,
causality between transactions and
events

 Data integrity?

4

What is SystemC?

• C++ class library

 concurrency clocks

 hierarchy HW data types …

• Simulation kernel
– Non-preemptive execution semantic

– Event-driven

• Transaction Level Modeling (TLM)
– Separation of communication and functionality

– Communication by method calls: write(data,addr)

– No detailed protocols, no clocks, …

www.systemc.org

5

Running Example (1)

void read(char &c_out) {

 while (num_elemts == 0)

 wait(write_event);

 c_out = data[first];

 --num_elemts;

 // first = (first + 1) % max; bug

 read_event.notify();

}

void write(char c_in) {

 while (num_elemts == max)

 wait(read_event);

 data[(first + num_elemts) % max] = c_in;

 ++num_elemts;

 write_event.notify();

}

6

Running Example (2) – An Execution

Write A

Read A

…

Write B Write C Write D Write E

Read A Read A Read A Read A

wait(read_event);

FIFO = ABCDE

wait(write_event);

Empty FIFO

7

Outline

• Motivation

• SystemC

• TLM Property Checking
– Model generation

– Property language & monitor generation

– BMC-based formulation

• TLM Properties with Local Variables

• Experimental results

• Conclusions

8

Model Generation (SystemC to C)

Step 1: Basic transformation

 Identify elaborated structure

 Translate OO features to C

Step 2: Scheduler generation

 Scheduler loops

 Non-deterministic process selection

 Code for process execution

Step 3: Events & Context Switches Handling

 Test/set primitive variables

 Break/continuation of process with jumps

9

Properties & Monitors (1)

• PSL based (see Tabakov et al. FMCAD08)

• Primitives:

– Variables

– Return value and parameters of functions

– Begin & end of transaction

– Event notification

• “Time”:

– Sample at all system events

– Change of resolution by clock expressions

System event

10

Properties & Monitors (2)

• TLM Properties

– Notification of events, begin & end of
transactions and order of occurrence

• Monitors

– Translate property to FSM

– Embedded into C model as C++ assertions

default clock = write_event.notified || read_event.notified;

always (write_event.notified -> next_e[1:10] read_event.notified)

11

BMC & Induction

• Transition relation

– State s = current values of variables

– T defined by outermost loop of scheduler

• Formulation

k = 0, 1, 2 … (number of unwound main loops)

• Induction (see Große et al. MEMOCODE10)

12

Outline

• Motivation

• SystemC

• TLM Property Checking

• TLM Properties with Local Variables
– Syntax & Semantics

– Monitoring Logic

– Optimization

• Experimental results

• Conclusions

13

Syntax & Semantics

• Syntax

– Local variable in TLM property by
var x = exp

– x refers to actual value

• Semantics

– Based on FSM

– Tokens for overlapping evaluations

– Token holds local variables

default clock = write_event.notified || read_event.notified;
always ((write_event.notified, var x = c_in)
 -> next_e[1:10] (read_event.notified && c_out == x))

14

One Evaluation

IS

1S

2S

3S

4S

5S
XS

r && c_out == v

A

Write A

Read A

B C D E

A A A A

cond

*

cond

cond

cond

cond

cond = w || (r && v != c_out)

r

w, v = c_in

15

Overlapping Evaluations

IS

1S

2S

3S

4S

5S
XS

r && c_out == v

A

B

C

D

E

Write A

Read A

B C D E

A A A A

cond

*

cond

cond

cond

cond

cond = w || (r && v != c_out)

r

w, v = c_in

16

Monitoring Logic

• Embedding allows Formal PC

• Token

– n values of n local variables

– 1 value for FSM position

– Statically allocated

• Number of tokens

– Upper-bound = bound of the property
(syntactically derivable)

– Exact number  incremental PC

17

Optimization

• Avoid overlapping evaluations

– Only 1 token necessary

– Start evaluation from non-deterministic
state  all possible evaluations covered
implicitly

– Unwinding depth sufficient?  counter for
passed sampling points

18

Experiments

• CBMC v4.0, AMD 3.4 GHz, 8GB RAM, Linux

• FIFO design

FIFO Size IP OPT

max = 5 47.90s 22.25s

max = 10 877.43s 220.69s

19

Conclusions

• Local variables support for TLM-PC

– Data integrity formally specified and proven

– Optimization by using non-determinism

• Future work:

– Automation

– Extension for other property classes

