@ Universitat Bremen - Computer Architecture

Towards Proving
TLM Properties with
Local Variables

Hoang M. Le
Daniel Gro3e*
Rolf Drechsler

University of Bremen, Germany
grosse@informatik.uni-bremen.de

@ Universitat Bremen - Computer Architecture

Outline

e Motivation

e SystemC

e TLM Property Checking

e TLM Properties with Local Variables
e Experimental Results

e Conclusions

@ Universitat Bremen - Computer Architecture

Motivation

e ESL design
e Correctness of the initial TLM model

» Deadlock-freedom, local assertions,
causality between transactions and
events

» Data integrity?

@ Universitat Bremen - Computer Architecture

What is SystemC?

e C++ class library RN

concurrency clocks
hierarchy HW data types
e Simulation kernel

— Non-preemptive execution semantic
- Event-driven

e Transaction Level Modeling (TLM)

— Separation of communication and functionality
— Communication by method calls: write (data, addr)

— No detailed protocols, no clocks, ...

WWw.systemc.org

@ Universitat Bremen - Computer Architecture

Running Example (1)

pI‘OdLlCE:I consumer
. write(...) .
q main() read(...) q main()
M= thread [5 = port @: interface
void write(char c_in) { void read(char &c_out) {
while (num_elemts == max) while (num_elemts == 0)

wait(read_event); wait(write_event);

data[(first + num_elemts) % max] = c_in; c_out = datal[first];

++num_elemts; --num_elemts;
write_event.notify(); /] first = (first + 1) % max; bug
} read_event.notify();
}

@ Universitat Bremen - Computer Architecture

Running Example (2) - An Execution

Write A >

Write B

Write C

Write D

Write E

wait(read_event);
FIFO = ABCDE

|

ReadA ——> Read A ——> Read A ——> Read A ——> Read A

wait(write_event);

Empty FIFO

@ Universitat Bremen - Computer Architecture

Outline

e Motivation
e SystemC
e TLM Property Checking

— Model generation
— Property language & monitor generation
— BMC-based formulation

e TLM Properties with Local Variables
e Experimental results
e Conclusions

@ Universitat Bremen - Computer Architecture

Model Generation (SystemC to C)

Step 1: Basic transformation
= Identify elaborated structure

= Translate OO features to C
Step 2: Scheduler generation
= Scheduler loops
= Non-deterministic process selection
= Code for process execution
Step 3: Events & Context Switches Handling
= Test/set primitive variables
= Break/continuation of process with jumps

@ Universitat Bremen - Computer Architecture

Properties & Monitors (1)

e PSL based (see Tabakov et al. FMCADO0S8)
e Primitives:

— Variables

— Return value and parameters of functions

- Begin & end of transaction
— Event notification System event

e “Time":
— Sample at all system events
— Change of resolution by clock expressions

@ Universitat Bremen - Computer Architecture

Properties & Monitors (2)

e TLM Properties

— Notification of events, begin & end of
transactions and order of occurrence

default clock = write_event.notified || read_event.notified;
always (write_event.notified -> next_e[1:10] read_event.notified)

e Monitors
— Translate property to FSM
— Embedded into C model as C++ assertions

@ Universitat Bremen - Computer Architecture

BMC & Induction

e Transition relation
— State s = current values of variables
— T defined by outermost loop of scheduler

e Formulation
allSafe(sjp) = /\ safe(si, Si4+1)

0<i<n

sy ... Sy. (I(SO) Apath(syy) A—allSafe(srg. i))

k=20,1, 2 ... (number of unwound main loops)

e Induction (see GrofBe et al. MEMOCODE10)

@ Universitat Bremen - Computer Architecture

Outline

e Motivation

e SystemC

e TLM Property Checking

e TLM Properties with Local Variables

- Syntax & Semantics
— Monitoring Logic
— Optimization

e Experimental results
e Conclusions

@ Universitat Bremen - Computer Architecture

Syntax & Semantics

e Syntax

— Local variable in TLM property by
var X = exp

— X refers to actual value

default clock = write_event.notified || read_event.notified;
always ((write_event.notified, var x = c_in)
-> next_e[1:10] (read_event.notified && c¢_out == x))

e Semantics
- Based on FSM
— Tokens for overlapping evaluations

— Token holds local variables

@ Universitat Bremen - Computer Architecture

One Evaluation

[&& ¢ out ==V writtA Bl B B ¢ B D|'> E

ReadA P AP AP AP A

cond = w || (r && v !'= c_out)

cond

@ Universitat Bremen - Computer Architecture

Overlapping Evaluations
r&&c_outE\P g [W”tEA H B H C H D H E

—> ReadA > AP AP AP A

cond = w || (r&& v != c_out)

@ Universitat Bremen - Computer Architecture

Monitoring Logic

e Embedding allows Formal PC

e Token
— n values of n local variables
— 1 value for FSM position
— Statically allocated

¢ Number of tokens

- Upper-bound = bound of the property
(syntactically derivable)

— Exact number = incremental PC

@ Universitat Bremen - Computer Architecture

Optimization

e Avoid overlapping evaluations
— Only 1 token necessary

— Start evaluation from non-deterministic
state = all possible evaluations covered
implicitly

- Unwinding depth sufficient? = counter for
passed sampling points

@ Universitat Bremen - Computer Architecture

Experiments

e CBMC v4.0, AMD 3.4 GHz, 8GB RAM, Linux
e FIFO design

FIFOSize | IP OPT

max = 5 47.90s 22.25s
max = 10 877.43s 220.69s

@ Universitat Bremen - Computer Architecture

Conclusions

e Local variables support for TLM-PC
— Data integrity formally specified and proven
— Optimization by using non-determinism

e Future work:
— Automation
— Extension for other property classes

