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STABLE = SMT+ABL+GB 

“STABLE: A new QF-BV SMT solver for hard verification 
problems combining Boolean reasoning with computer 
algebra”, (DATE 2011), Grenoble, France. 
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Topic of this talk 

 The heart of STABLE is a computer-algebra-based engine. It 
incorporates an algebraic normal form algorithm that requires a 
polynomial model of the arithmetic parts of an SMT formula. 

 

 The effectiveness of this algorithm may heavily depend on the 
initial formulation of the polynomials. 

 

 Preprocessing of polynomials is crucial for successful 
performance of the normal form algorithm. 

 

… however, for proper understanding of this problem, let us  

briefly recall how arithmetic models are treated in STABLE. 
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Formal Property Checking - Overview 

Design of the SMT-solver STABLE 

SMT-Formula 

Preprocessing: 

• simplification 

• constant propagation 

• assumption propagations 
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Modeling arithmetic problem parts 
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 Polynomial models available for: 
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Modeling arithmetic problem parts 

N2/Ζ

 Model each individual data path component 

 

 

 

 

  

 using  polynomials over the ring 

 

 

 

 
Slack variables are artificial variables that are  

introduced to mimic the wrap around semantics  

of the components within a larger ring. 
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Application of Gröbner basis techniques 

 Overall polynomial system  

 

 

 
 

 Polynomial proof goal 

 

 

 Example: k-bit equality comparison 
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Application of Gröbner basis techniques 

 Validity of proof goal is equivalent to  

       

 

 Since       is a strong Gröbner basis this holds if and only if  

       

 

 Model can be refined using bit-valued variables such that 
zero function test  for                        becomes unnecessary. 
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Application of Gröbner basis techniques 

 Possible reasons for             : 

 
 

Outer:  The arithmetic parts of a design and a property, out  
 of which an SMT formula was generated, might include 
 custom-designed components, non-arithmetic 
 constraints, and bugs:  

 Treated by polynomial extraction and resource-limited 
SAT checks. 

 

Inner:  Processing of slack variables is not powerful enough  
 in polynomial systems of the computer-algebra engine: 

  Explained on the next slides. 

 

 

02  ),( GgNF nN
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Slack variables in STABLE 

 

 

 

 
 Pro:   Enables transformation of an arithmetic equation 
     into an element of the polynomial ring over           .   
 

 Contra:  Slack variables are only visible inside the  

     algebraic engine.  

     Replacement of slack variables by their defining   

     polynomials may eventually result in a      

     computational  blow-up. 
 

 Generate as few slack variables as possible! 
 

 Minimize the set of slack variables as much as possible! 
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Simplification of polynomials in STABLE 

 Estimate bounds 

 Compute an upper bound          of            in the polynomial                       

                                           

 

 The term         can be omitted if  
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Simplification of polynomials in STABLE 

 Improve bounds  

 For a particular node, reuse the bounds computed in fan-
ins and propagate them towards fan-outs. 

 

 Example: 
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Simplification of polynomials in STABLE 

 Match polynomials  

a)  Detect common slack variables from different components. 

 

Example: 
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Simplification of polynomials in STABLE 

 Match polynomials  

b)  Reuse slack variables for different polynomials originating  

 from the same SMT constraint. 

 

Example: 

 

 

 

 

 

 

However, if the partial assignment                            results in  

an overflow then it occurs simultaneously for both polynomials. 

Therefore, it always holds that              
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Experimental results  

 The proposed simplification algorithms were categorized 
into four slack strategies in STABLE as follows: 

 Strategy 0:   no slack optimizations 

 Strategy 1:   matching techniques 

 Strategy 2:   bounding techniques 

 Strategy 3:   matching and bounding techniques 

 

 Additionally, performance of STABLE was compared 
against Boolector (winner 2008 SMT-competition). 

  

 All experiments were carried out on Intel Xeon CPU E5440 
2,83 GHz 24 GB RAM running Linux. 
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Experimental results  

1) Suite of self-generated SMT instances that verify the function  

          by a multiplier design with bit widths: 4 to 24. ))(( dcbaf 
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Experimental results  

2) Suite of 1040 SMT instances that verify designs of industrial 
Booth-encoded multipliers for bit width from 4 up to 64 bits. 
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Experimental results  

3) Suite of 640 SMT instances that verify arithmetic operations in an 
RTL design of the industrial TriCore processor. 
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Formal Property Checking - Overview 

 

 STABLE demonstrates outstanding performance when 
solving data-path verification problems at the register 
transfer level. 

 

 

 Preprocessing techniques for polynomial models are vital 
for the practical efficiency of the overall SMT-based 
verification flow in STABLE. 

 

  

Conclusion 
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Formal Property Checking - Overview 

 

 

Thank you for your attention! 


