
Formal Property Checking - Overview 

 1 

Preprocessing Polynomials  
for Arithmetic Reasoning within  

the SMT-Solver STABLE 

Oliver Marx, Evgeny Pavlenko, Markus Wedler, Dominik Stoffel, Wolfgang Kunz 

Electronic Design Automation Group 

Dep. of Elect. and Comp. Eng., University of Kaiserslautern, Germany 
 

 

Alexander Dreyer 

Department of System Analysis, Prognosis and Control 

Fraunhofer ITWM, Kaiserslautern, Germany 
 

 

Gert-Martin Greuel 

Computer Algebra Group 

Department of Mathematics, University of Kaiserslautern, Germany 

CFV’11                                                                                               San-Jose, 10.11.11 



Formal Property Checking - Overview 

 2 

STABLE = SMT+ABL+GB 

“STABLE: A new QF-BV SMT solver for hard verification 
problems combining Boolean reasoning with computer 
algebra”, (DATE 2011), Grenoble, France. 

 



Formal Property Checking - Overview 

 3 

Topic of this talk 

 The heart of STABLE is a computer-algebra-based engine. It 
incorporates an algebraic normal form algorithm that requires a 
polynomial model of the arithmetic parts of an SMT formula. 

 

 The effectiveness of this algorithm may heavily depend on the 
initial formulation of the polynomials. 

 

 Preprocessing of polynomials is crucial for successful 
performance of the normal form algorithm. 

 

… however, for proper understanding of this problem, let us  

briefly recall how arithmetic models are treated in STABLE. 

 



Formal Property Checking - Overview 

 4 

Formal Property Checking - Overview 

Design of the SMT-solver STABLE 

SMT-Formula 

Preprocessing: 

• simplification 

• constant propagation 

• assumption propagations 

Identify  variables 

or branching  

(V) 

exists new 

assignment  val(V) to 

variables in V 

propagate val(V) 

Create polynomials G  

for arith. constraints   

in cone of influence 

 of  each proof goal (f) 

Compute normal form 

NF(f,G) of polynomial f 

encoding proof goal 

with respect to G 

Yes 
Extract further  

polynomials G’ 

Learn val(V)f   

Solve bit-blasted  

instance with SAT 

NF(f,G) = 0  

SAT prove 

NF(f,G) = 0  

G’≠∅ 

No Yes 

Yes 

Yes 

No 

No 

No 

SAT / UNSAT 

GBABL 

ABL Extractor 

G=G U G’ 

 
SAT 

Computer 

 
   algebra 

Extraction of 

ABL Information 



Formal Property Checking - Overview 

 5 

Modeling arithmetic problem parts 

• 

- 

HAa

b

s

c

FA
a
b

s

coci

arithmetic word level arithmetic bit level (ABL) 

+ 

 Polynomial models available for: 

 

 



Formal Property Checking - Overview 

 6 

1000

1

1

0002

2

2)(

1,1,2)22(2

sbar

nlnksbbaarr n

n

l

l

k

k

n

n



 











nlnksbbaarr n

n

l

l

k

k

n

n 

 ,,2)22(2 0001

1 

Modeling arithmetic problem parts 

N2/Ζ

 Model each individual data path component 

 

 

 

 

  

 using  polynomials over the ring 

 

 

 

 
Slack variables are artificial variables that are  

introduced to mimic the wrap around semantics  

of the components within a larger ring. 



Formal Property Checking - Overview 

 7 

Application of Gröbner basis techniques 

 Overall polynomial system  

 

 

 
 

 Polynomial proof goal 

 

 

 Example: k-bit equality comparison 

 

 

 














componentth - ofbitwidth ,,1

components ofnumber ,,1
:,

jk

j
gG kj





],...,[/ n

N xxZg 12







1

0

2
k

i

ii

i bag )(



Formal Property Checking - Overview 

 8 

Application of Gröbner basis techniques 

 Validity of proof goal is equivalent to  

       

 

 Since       is a strong Gröbner basis this holds if and only if  

       

 

 Model can be refined using bit-valued variables such that 
zero function test  for                        becomes unnecessary. 

 

 

 

 

 

 

 

)()( gVGV 

0),2(  GgNF nN

G

),( GgNF nN2



Formal Property Checking - Overview 

 9 

Application of Gröbner basis techniques 

 Possible reasons for             : 

 
 

Outer:  The arithmetic parts of a design and a property, out  
 of which an SMT formula was generated, might include 
 custom-designed components, non-arithmetic 
 constraints, and bugs:  

 Treated by polynomial extraction and resource-limited 
SAT checks. 

 

Inner:  Processing of slack variables is not powerful enough  
 in polynomial systems of the computer-algebra engine: 

  Explained on the next slides. 

 

 

02  ),( GgNF nN



Formal Property Checking - Overview 

 10 

Slack variables in STABLE 

 

 

 

 
 Pro:   Enables transformation of an arithmetic equation 
     into an element of the polynomial ring over           .   
 

 Contra:  Slack variables are only visible inside the  

     algebraic engine.  

     Replacement of slack variables by their defining   

     polynomials may eventually result in a      

     computational  blow-up. 
 

 Generate as few slack variables as possible! 
 

 Minimize the set of slack variables as much as possible! 

 

 

 

 

 

)()()()()()(

)(~

),,,(: j

t

tj

m

jjt

j

t

i

j

i

i

t

j saaafrG
j

22 21

1

0








tj

m

jjt

j

t

i

j

i

i

t

j
j

aaafrG 22 21

1

0

mod),,,(: )()()()()(

)(






NZ 2/



Formal Property Checking - Overview 

 11 

Simplification of polynomials in STABLE 

 Estimate bounds 

 Compute an upper bound          of            in the polynomial                       

                                           

 

 The term         can be omitted if  
  

 Example: 
][/mod XZsxxrxxr N222 210210 

0210 2121  sxxxx ub)(and},{,

210 xxr 

.)( sXfrp n
n

i

i 2
1

0






ubf

.n

ubf 2sn2

)(Xf



Formal Property Checking - Overview 

 12 

Simplification of polynomials in STABLE 

 Improve bounds  

 For a particular node, reuse the bounds computed in fan-
ins and propagate them towards fan-outs. 

 

 Example: 

,)(and)(where 01 21  ubub xx

],[/)( XZsxxr N22210 

.)(and)(then 021 2121  sxxxx ubub



Formal Property Checking - Overview 

 13 

Simplification of polynomials in STABLE 

 Match polynomials  

a)  Detect common slack variables from different components. 

 

Example: 

 

 

 

 

 

  









222

111

2

1

2

2

sxfp

sxfp
n

n

)(

)(

.thenand)()(if 212121 ssnnxfxf 



Formal Property Checking - Overview 

 14 

Simplification of polynomials in STABLE 

 Match polynomials  

b)  Reuse slack variables for different polynomials originating  

 from the same SMT constraint. 

 

Example: 

 

 

 

 

 

 

However, if the partial assignment                            results in  

an overflow then it occurs simultaneously for both polynomials. 

Therefore, it always holds that              

 

  

01222 11

2

110010  bababarr ,with,mod)()(









100102

00001

422

2

sbarrp

sbarp

))((

)(

.10 ss 

),( 01 11  ba



Formal Property Checking - Overview 

 15 

Formal Property Checking - Overview 

Experimental results  

 The proposed simplification algorithms were categorized 
into four slack strategies in STABLE as follows: 

 Strategy 0:   no slack optimizations 

 Strategy 1:   matching techniques 

 Strategy 2:   bounding techniques 

 Strategy 3:   matching and bounding techniques 

 

 Additionally, performance of STABLE was compared 
against Boolector (winner 2008 SMT-competition). 

  

 All experiments were carried out on Intel Xeon CPU E5440 
2,83 GHz 24 GB RAM running Linux. 



Formal Property Checking - Overview 

 16 

Formal Property Checking - Overview 

Experimental results  

1) Suite of self-generated SMT instances that verify the function  

          by a multiplier design with bit widths: 4 to 24. ))(( dcbaf 



Formal Property Checking - Overview 

 17 

Formal Property Checking - Overview 

Experimental results  

2) Suite of 1040 SMT instances that verify designs of industrial 
Booth-encoded multipliers for bit width from 4 up to 64 bits. 



Formal Property Checking - Overview 

 18 

Formal Property Checking - Overview 

Experimental results  

3) Suite of 640 SMT instances that verify arithmetic operations in an 
RTL design of the industrial TriCore processor. 



Formal Property Checking - Overview 

 19 

Formal Property Checking - Overview 

 

 STABLE demonstrates outstanding performance when 
solving data-path verification problems at the register 
transfer level. 

 

 

 Preprocessing techniques for polynomial models are vital 
for the practical efficiency of the overall SMT-based 
verification flow in STABLE. 

 

  

Conclusion 



Formal Property Checking - Overview 

 20 

Formal Property Checking - Overview 

 

 

Thank you for your attention! 


