
Using Constraint Solvers in Interactive and
Automated Theorem Proving1

Natarajan Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

Nov 10, 2011

1This work was supported by NSF Grant CSR-EHCS(CPS)-0834810 and
NASA Cooperative Agreement NNX08AY53A.



John McCarthy: Logic and Artificial Intelligence

It is reasonable to hope that the relationship between
computation and mathematical logic will be as fruitful in the
next century as that between analysis and physics in the last.
The development of this relationship demands a concern for
both applications and for mathematical elegance.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving2



Constraints and Deduction

Constraint solving over finite and infinite domains form the
core of inference.

Boolean (SAT) and theory satisfiability (SMT) are critical
techniques for hardware and software verification.

These techniques have many interesting applications.

We have implemented and used several constraint solvers in
tools such as PVS, SAL, Yices, Probabilistic Consistency
Engine (PCE), and SimCheck and DimSim.

We review some of the techniques and their applications (e.g.,
dimension analysis) in automated and interactive tools for
theorem proving and verification.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving3



A Suite of Constraint-Based Tools

STP: Shostak’s decision procedure combining equality and
arithmetic

PVS: Interactive theorem prover for higher-order logic with
subtype constraints

SAL: Transition system framework with model checking and
analysis tools

Yices: Solver for Boolean + Theory satisfiability

PCE: SAT solver with probabilities

SimCheck/SimProver: Assertion-based verification for
Simulink models

DimSim: Modular dimension checker for Simulink

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving4



Talk Outline

Basic principles of inference-based constraint solving

Resolution and Satisfiability with Conflict-Directed Clause
Learning

Satisfiability Modulo Theories (with Bruno Dutertre)

Modular dimension checking (with Sam Owre and Indranil
Saha)

Timing verification and Scheduling (based on slides by Bruno
Dutertre)

Constraints in Interactive Proving

Probabilistic Inference (with Sam Owre and Shalini Ghosh)

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving5



Logic Basics

Logic studies the trinity between language, interpretation, and
proof.

Language circumscribes the syntax that is used to construct
sensible assertions.

Interpretation fixes the meaning of certain symbols, e.g., the
logical connectives, equality, and delimiting the variation in
the meanings of other symbols, e.g., variables, functions, and
predicates.

Constraint solving is about finding satisfying variable
assignments for a formula.

When there is no such assignment, the formula is unsatisfiable,

Both satisfiability and unsatisfiability have positive
applications.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving6



Inference System

An inference system I for a language and theory is an
inference structure 〈Ψ,Λ,`〉 (state, logical interpretation, and
inference relation) that is

1 Conservative: Whenever ϕ `I ϕ′, Λ(ϕ) and Λ(ϕ′) are
T -equisatisfiable.

2 Progressive: The reduction relation `I should be
well-founded, i.e., infinite sequences of the form
〈ϕ0 ` ϕ1 ` ϕ2 ` . . .〉 must not exist.

3 Canonizing: A state is irreducible only if it is either ⊥ or is
T -satisfiable.

If formulas can be coded as a state, the inference system is a
sound and complete inference procedure for satisfiability.

Implementing inference relation yields a decision procedure.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving7



Ordered Resolution

Input K is a set of clauses.

Atoms are ordered by � which is lifted to literals so that
¬p � p � ¬q � q, if p � q.

Literals appear in clauses in decreasing order without
duplication.

Tautologies, clauses containing both l and l , are deleted from
initial input.

Res
K , l ∨ Γ1, l ∨ Γ2

K , l ∨ Γ1, l ∨ Γ2, Γ1 ∨ Γ2

Γ1 ∨ Γ2 6∈ K
Γ1 ∨ Γ2 is not tautological

Contrad
K , l , l

⊥

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving8



Ordered Resolution: Example

(K0 =) ¬p ∨ ¬q ∨ r , ¬p ∨ q, p ∨ r , ¬r

(K1 =) ¬q ∨ r , K0
Res

(K2 =) q ∨ r , K1
Res

(K3 =) r , K2
Res

⊥
Contrad

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving9



Correctness

Progress: Bounded number of clauses in the given literals.
Each application of Res generates a new clause.

Conservation: For any model M, if M |= l ∨ Γ1 and
M |= l ∨ Γ2, then M |= Γ1 ∨ Γ2.

Canonicity: Given an irreducible non-⊥ configuration K in
the atoms p1, . . . , pn with pi ≺ pi+1 for 1 ≤ i ≤ n, build a
series of partial interpretations Mi as follows:

1 Let M0 = ∅
2 If pi+1 is the maximal literal in a clause pi+1 ∨ Γ ∈ K and

Mi 6|= Γ, then let Mi+1 = Mi{pi+1 7→ >}.
3 Otherwise, let Mi+1 = Mi{pi+1 7→ ⊥}.

Each Mi satisfies all the clauses in K in the atoms p1, . . . , pi .

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving10



CDCL Informally

Goal: Does a given set of clauses K have a satisfying
assignment?

If M is a total assignment such that M |= Γ for each Γ ∈ K ,
then M |= K .

If M is a partial assignment at level h, then propagation
extends M at level h with the implied literals l such that
l ∨ Γ ∈ K ∪ C and M |= ¬Γ.

If M detects a conflict, i.e., a clause Γ ∈ K ∪ C such that
M |= ¬Γ, then the conflict is analyzed to construct a conflict
clause that allows the search to be continued from a prior
level.

If M cannot be extended at level h and no conflict is detected,
then an unassigned literal l is selected and assigned at level
h + 1 where the search is continued.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving11



Conflict-Driven Clause Learning (CDCL) SAT

Name Rule Condition

Propagate
h, 〈M〉,K ,C

h, 〈M, l [Γ]〉,K ,C
Γ ≡ l ∨ Γ′ ∈ K ∪ C
M |= ¬Γ′

Select
h, 〈M〉,K ,C

h + 1, 〈M; l []〉,K ,C
M 6|= l
M 6|= ¬l

Conflict
0, 〈M〉,K ,C

⊥
M |= ¬Γ
for some Γ ∈ K ∪ C

Backjump
h + 1, 〈M〉,K ,C

h′, 〈M≤h′ , l [Γ′]〉,K ,C ∪ {Γ′}

M |= ¬Γ
for some Γ ∈ K ∪ C
〈h′, Γ′〉
= analyze(ψ)(Γ)

for ψ = h, 〈M〉,K ,C

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving12



CDCL Example

Let K be
{p∨q,¬p∨q, p∨¬q, s ∨¬p∨q,¬s ∨p∨¬q,¬p∨ r ,¬q∨¬r}.

step h M K C Γ

select s 1 ; s K ∅
select r 2 ; s; r K ∅
propagate 2 ; s; r ,¬q[¬q ∨ ¬r ] K ∅
propagate 2 ; s; r ,¬q, p[p ∨ q] K ∅
conflict 2 ; s; r ,¬q, p K ∅ ¬p ∨ q

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving13



CDCL Example (contd.)

step h M K C Γ

conflict 2 ; s; r ,¬q, p K ∅ ¬p ∨ q

backjump 0 ∅ K q

propagate 0 q[q] K q

propagate 0 q, p[p ∨ ¬q] K q

propagate 0 q, p, r [¬p ∨ r ] K q

conflict 0 q, p, r K q ¬q ∨ ¬r

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving14



CDCL Correctness

Progress: Each backjump step adds a new assignment at the
level h′ so that

∑h
i=0 |Mi | ∗ (N + 1)(N−h) increases toward the

bound (N + 1)(N+1) for N = |vars(K )|. In the example,
N = 4, the backjump step goes from a value 1300 in base 5
to the value 10000 which is closer to the bound 40000.

Conservation: In each transition from 〈M,K ,C 〉 to
〈M ′,K ′,C ′〉 (or ⊥), the clause sets M0 ∪ K ∪ C and
M0 ∪ K ′ ∪ C ′ are equisatisfiable.

Canonicity: In an irreducible non-⊥ state, M is total
assignment and there is no conflict so for each clause Γ in
K ∪ C , M |= Γ.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving15



Example Inference Systems

Inference systems help structure the correctness arguments.

Several theoretical results are in Modularity and refinement in
inference systems [Ganzinger, R, S].

Simplifiers are inference systems without canonicity.

Many inference algorithms can be described as inference
systems, e.g.,

1 Union-find for equality
2 Propositional resolution
3 Basic superposition for equality/propositional reasoning
4 CDCL
5 Simplex-based linear arithmetic reasoning
6 SMT

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving16



SMT Overview

In SMT solving, the Boolean atoms represent constraints over
individual variables ranging over integers, reals, datatypes, and
arrays.

The constraints can involve theory operations, equality, and
inequality.

The SAT solver has to interact with a theory constraint solver
which propagates truth assignments and adds new clauses.

The theory solver can detect conflicts involving theory
reasoning, e.g.,

1 f (x) = f (y) ∨ x 6= y
2 f (x − 2) 6= f (y + 3) ∨ x − y ≤ 5 ∨ y − z ≤ −2 ∨ z − x ≤ −3
3 x XOR y 6= 0b0000000 ∨ select(store(A, x , v), y) = v

The theory solver must produce efficient explanations,
incremental assertions, and efficient backtracking.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving17



Example Constraint Solvers

Core theory: Equalities between variables x = y , offset
equalities x = y + c .

Term equality: Congruence closure for uninterpreted
function symbols

Difference constraints: Incremental negative cycle
detection for inequality constraints of the form x − y ≤ k .

Linear arithmetic constraints: Fourier’s method, Simplex.

Bit Vectors: Bit-blasting

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving18



Theory Constraint Solver Interface

The satisfiability procedure uses a theory constraint solver oracle
which maintains the theory state S with the interface operations:

1 assert(l , S) adds literal l to the theory state S returning a
new state S ′ or ⊥[∆]

2 check(S) checks if the conjunction of literals asserted to S is
satisfiable, and returns either > or ⊥[∆].

3 retract(S , l): Retracts, in reverse chronological order, the
assertions up to and including l from state S .

4 model(S): Builds a model for a state known to be satisfiable.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving19



Satisfiability Modulo Theories

SMT deals with formulas with theory atoms like x = y ,
x 6= y , x − y ≤ 3, and select(store(A, i , v), j) = w .

The CDCL search state is augmented with a theory state S in
addition to the partial assignment.

Total assignments are checked for theory satisfiability.

When a literal is added to M by unit propagation, it is also
asserted to S .

When a literal is implied by S , it is propagated to M.

When backjumping, the literals deleted from M are also
retracted from S .

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving20



A Theory Solver: Gauss–Jordan Elimination

GJ is a constraint solver for linear arithmetic equalities.

The logical state consists of the input constraints G , where
each constraint is of the form p = 0 and the solution state S .

For each variable x , S(x) returns a polynomial.

x is a basis variable iff S(x) 6= x .

The operation S[p] replaces each variable x in p with S(x)
and renormalizes to an order sum-of-products form.

Delete
G , p; S

G ; S
if S [p] = 0

Contrad
G , p; S

⊥ if S [p] = k 6= 0

Solve
G , p; S

G ; S{x ← q} if S [p] = kx + r

with k 6= 0 and q = −r/k

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving21



SMT Applications

Test generation: Find assignments to the individual variables
satisfying a path constraint in a program.

Infinite-state bounded model checking: BMC for programs
with assignments, unbounded arithmetic, arrays, datatypes,
and timers.

Predicate abstraction and abstract reachability: For an
atom substitution γ and formula φ, find Boolean formula φ̂
such that φ =⇒ γ(φ̂).

Scheduling, planning, constraint solving, and MaxSAT in
unbounded domains.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving22



Example Uses of Yices

Model Checking

Backend solver to the SAL model checkers (SRI)
MCMT (Ghilardi & Ranise)
Model checking of Lustre Programs (Hagen & Tinelli)

Program Analysis

Symbolic Execution: Sireum/Kiasan (Deng, Robby, Hatcliff),
JPF (Anand, Păsăreanu, Visser)
Backend prover for SPARK-ADA (Jackson, Ellis, Sharp)

Within Interactive Theorem Provers

PVS, Isabelle/HOL can use Yices as an end-game solver

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving23



Applying Gauss–Jordan in Dimension Checking

Dimensional mismatches have led to some spectacular system
failures: Mars Climate Orbiter (1999), SDI test using Space
Shuttle Discovery (1985)

Assume a fixed number of basic dimensions, e.g., mass,
length, time.

Encode the dimension of each variable as a triple 〈l ,m, t〉,
representing the product LlMmT t , e.g., LMT−2

The dimension signature for operations yields a constraint
system

z = x + y generates the constraint that
dim(x) = dim(y) = dim(z).
z = x ∗ y generates the constraint that
dim(z) = dim(y) + dim(z)

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving24



Dimension Checking Simulink Models

Simulink represents state machines by flow diagrams.

Each model is a block consisting of input and output signals.

Blocks can be composed of primitive blocks for operations
such as addition, multiplication, differentiation, and
integration.

The signals are numeric data and typically have physical
interpretations.

Errors do occur from dimensional mismatches, e.g., velocity
instead of acceleration.

We only handle dimension solving, but are extending the
analysis to units and conversions between units.

DimSim is a dimension checker for Simulink that uses a
constraint solver based on Gauss–Jordan elimination.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving25



DimSim: Dimension Checker for Simulink

Input: A Simulink model whose signals may be annotated
with their dimensions

Objective:

Determine the dimensions of all signals in the model uniquely,
if possible
Otherwise, check dimensional consistency of the model, and
find out the most general dimensions of the signals
In case of an inconsistency, provide the root cause

(LT-1)(LT-1) (LT-1)

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving26



Compositional Dimension Analysis

Dimension checking algorithm is compositional
- Dimension consistency of the lower level subsystems is first
checked
- To check the higher level subsystem only the interfaces of
the lower level subsystems are considered
- Helps in achieving scalability

(LT-1)(LT-1) (LT-1)

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving27



Modular Dimension Solving : Gauss-Jordan Elimination

Each block consists of input, output, and internal variables
connected into data flow diagrams using primitive and
compound sub-blocks.

Each sub-block exports the dimensional constraints on its port
variables.

These are imported by the block by suitably renaming the
constraints.

The local and imported constraints are asserted to a GJ solver.

The solver detects
Inconsistency, i.e., the absence of a valid dimensional
assignment: DimSim identifies the core unsatisfiable
constraints
Under-constraint, i.e., an internal signal whose dimension is
determined by those of the external variables

The dimensional constraints on the inputs and outputs are
exported to any parent subsystem.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving28



Case Studies

Model Domain

Thermal model of a house (TMH) General application

Collision avoidance system (CD2D) Aerospace

Cruise control system (CC) Automotive

Rotating clutch system (RC) Automotive

Engine timing control system (ETC) Automotive

Transmission control system (TC) Automotive

Robot motion control system (RMC) Robotics

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving29



Experimental Results

Model Blocks Variables Subsystems Required Constraints Errors
Annotations found

TMH 48 79 3 12 95 0
CD2D 93 164 9 23 213 1
CC 74 139 6 28 149 0
RC 102 201 10 41 295 0
ETC 113 220 12 43 304 0
TC 930 1935 34 425 3240 1
RMC 276 526 17 78 2637 1

Table: Model data

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving30



Types of Errors Found

Erroneous Annotation

Erroneous Design

Erroneous Constant

Incorrect Blocks Usage

Missing Blocks

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving31



Experimental Results

Error Model Type of Error No of UC
Constraints

Error1 CD2D Erroneous 3
Design

Error2 TC Erroneous 11
constant

Error3 RMC Incorrect 31
presence of a block

Table: Error Data

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving32



Dimension Error in CD2D Model

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving33



Dimension Error in M7 Model

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving34



Dimension Error in ETC Model

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving35



Related Work

Wand and OḰeefe [1991] add Kennedy [1994] worked on
dimension analysis of functional programming languages.
- provided unification based algorithm to find the most general
dimensions for every typable dimension preserving terms

A number of earlier works on different programming languages

Pascal - [Agrawal and Garg, 1984]
ADA - [Hilfinger, 1988] and [Rogers, 1988]
C++ - [Umrigar, 1994] and [Cmelik and Gehani, 1988]
Java - [VanDelft, 1999]
FORTRAN - [Petty 2001]
Fortress (Extension of Java) - [Allen et al., 2004]
Spreadsheets - [Antoniu et al., 2004]
C - [Jiang and Su, 2006]

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving36



Application: Scheduling for TTEthernet

End
System

End
System

Switch

Switch

Switch

Dataflow

Ethernet for real-time, distributed systems:
Guarantees for real-time messages: low jitter, predictable
latency, no collisions
All nodes are synchronized (fault-tolerant clock
synchronization protocol)
All communication and computation follow a system-wide,
cyclic schedule

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving37



Computing a Communication Schedule

Input

a set of virtual links: dataflows from one end system to one or
more end systems
the communication period

Constraints

no contention: all frames on every link are in a different time
slot
path constraints: relayed frames must be scheduled after they
are received
other constraints: limits on switch memory, application
constraints, etc.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving38



TTE Scheduling as an SMT Problem (Steiner, 2010)

Frames

Messages are called frames in TTE.
A frame f is characterized by its period f.period and its length
f.length.
Routing is static: we know a priori the source of f, all receivers,
and the set of communication links that will transport f.
Given a link i, our goal is to compute when to send f over that
link. The start of this transmission is denoted by offsetf ,i

Simplification: in the simplest case, all frames have the same
period (equal to the schedule cycle).

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving39



Example Scheduling Constraints

No Collisions: if distinct frames f and g use link i :

offsetf ,i + f.length ≤ offsetg ,i or offsetg ,i + g.length ≤ offsetf ,i

Path Constraints: if a switch receives f on link i and relays it
on link j

offsetf ,j − offsetf ,i ≥ maxhopdelay

End-to-End Latency: along a path i0, i1, . . . , in

offsetf ,in − offsetf ,i0 ≤ maxlatency

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving40



Resulting SMT Problem

Large Difference Logic Problem (over the integers)

Typical size: 10000-20000 variables, 106 to 107 constraints
This depends on the network topology and number of virtual
links

Solving this with Yices

Yices 1 can solve moderate size instances (about 120 virtual
links) out of the box
In Wilfried Steiner’s RTSS 2010 paper: incremental approach
using push/pop can solve much larger instances (up to 1000
virtual links)

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving41



Example: Biphase Mark Protocol (BMP)

Biphase Mark: Physical layer protocol for data transmission
(over serial links)

transmitter and receiver have independent clocks
encoding merges transmitter clock + data into a single bit
stream
decoding goal: recover the data from the bit stream
Issues: must take into account jitter and sampling uncertainties

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving42



BMP Verification [Brown and Pike, TACAS’06]

Proof Process

The correctness property is not invariant (for any reasonable k)
We need auxiliary lemmas:

l0 : LEMMA system |- G(phase = Settle OR tdata = One OR tdata = Zero);

l1 : LEMMA system |- G(phase = Stable => (tclk <= (time + TSTABLE)));

l2 : LEMMA system |- G(phase = Settle => (tclk <= (time + TSETTLE)));

The full proof requires four auxiliary lemmas, the main one is
proved by k induction for k = 5.
All proofs run in a few seconds.

Much Easier than Previous Proofs of BMP

Vaandrager and de Groot, 2004, use PVS and Uppaal
Difficult proof: need 37 invariants, 4000 proof steps, hours to
run

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving43



PVS in a Slide

Prototype Verification System (PVS) is an interactive
specification/verification system developed over the last
twenty years.

The PVS specification language extends higher-order logic
with predicate subtypes, dependent types, parametric theories,
and theory interpretations.

Type constraints handle array index bounds, division by zero,
and a range of other sanity checks – a well-typed program can
only crash due to resource limitations.

Arbitrary formulas can be used as type constraints – type
checking is undecidable.

Many features of the language generate proof obligations that
can be discharged interactively or automatically.

The PVS interactive prover integrates SMT solvers, BDDs,
rewriting, case analysis, and quantifier instantiation.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving44



Interactive Proof: N-Queens in PVS

We use PVS to define and verify an algorithm to check find a legal
placement for N queens on an N × N chess board, if there is one.

A placement is just a mapping from the column index to the row
index containing the queen for that column.

nqueens [N: nat ]: THEORY

BEGIN

board : TYPE = [below(N)->below(N)]

A, B, queen, new_queen: VAR board

i, j, k: VAR upto(N)

extends(i, A, queen): bool =

(FORALL (j: below(i)): A(j) = queen(j))

p: VAR [board -> bool]

.

.

.

END nqueens

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving45



Guarded Lifted Type

For search problems, the result type should capture the meaning of
success and failure.

qlift?(p)(x : lift[board]): bool =

CASES x OF

bottom: (FORALL queen: NOT p(queen)),

up(queen): p(queen)

ENDCASES

good_extension?(i, A, p)(B): bool =

(p(B) AND extends(i, A, B))

An invariant of the search is that for any partial assignment

1 The prior assignments have no good extensions, and

2 The continuation of the search with this assignment yields a
good extension, if there is one.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving46



Search Within Column

To position, a queen within a column, try each position to see if
the continuation of the search on the remaining columns (with
parameter f) succeeds.

search((i: below(N)), A, p,

(j | (FORALL (k: below(j), B):

NOT good_extension?(i+1, A WITH [i:= k], p)(B))),

(f: [B: board -> (qlift?(good_extension?(i+1, B, p)))]))

: RECURSIVE

(qlift?(good_extension?(i, A, p))) =

(IF j = N THEN bottom

ELSE LET B = A WITH [i := j]

IN CASES f(B) OF

bottom: search(i, A, p, j+1, f),

up(C): up(C)

ENDCASES

ENDIF)

MEASURE N - j

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving47



Scan Across Columns

To position the queens from columns i upwards, search for a
position in column i that can be extended with a solution from
column i+1 upwards.

scan(i, p)(queen): RECURSIVE

(qlift?(good_extension?(i, queen, p)))

=

(IF i = N

THEN IF p(queen)

THEN up(queen)

ELSE bottom

ENDIF

ELSE search(i, queen, p, 0, scan(i+1, p))

ENDIF)

MEASURE N - i

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving48



N-Queens Search

The search operation is exhaustive.

findboard(p): (qlift?(p)) =

scan(0, p)(LAMBDA (i: below(N)): 0)

goodqueen?(queen): bool =

(FORALL (i, j: below(N)): i /= j IMPLIES

(queen(i) /= queen(j) AND

(i - j /= queen(i) - queen(j)) AND

(j - i /= queen(i) - queen(j))))

A good placement is one where no two queens are on the same
row or on the same upward or downward diagonal.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving49



N-Queens Summary

There are no explicit theorems, since the proofs are all in the
proof obligations (TCCs) generated by the typechecker.

There are 23 TCCs, 4 are subsumed, 12 are discharged by the
default strategy.

The remaining seven TCCs are proved with a modest amount
(five to ten steps) of interaction.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving50



Logic and Probability (Wikipedia)

Medical diagnosis offers a simple example of Bayesian
reasoning.

We have a test for a disease that returns positive or negative
results.

If the patient has the disease, the test is positive with
probability .99.

If the patient does not have the disease, the test is positive
with probability .05.

A patient has the disease with probability .001.

What is the probability that a patient with a positive test has
the disease?

Pr(D|pos) = Pr(pos|D)Pr(D)/P(pos) =
.99× .001/(.99× .001 + .05× .999) = 99/5094 = .0194

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving51



Medical Diagnosis in PCE

sort Patient;

const a: Patient;

predicate testedPositive(Patient) hidden;

predicate diseased(Patient) hidden;

add testedPositive(a) or ~diseased(a) 4.6; # 99%

add ~testedPositive(a) or ~diseased(a) .01; # 1%

add testedPositive(a) or diseased(a) .05; # 5%

add ~testedPositive(a) or diseased(a) 3.0; # 95%

add ~diseased(a) 6.9; # 99.9%

add diseased(a) .001; # .1%

add testedPositive(a);

mcsat_params 1000000, 0.5, 20.0, 0.5, 30;

ask diseased(a);

Result:

[] 0.020: (diseased(a))

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving52



Conclusions

Constraint solving is widely used in verification to

Generate test cases
Perform extended static analysis
Prove assertions
Check dimensional correctness
Schedule tasks
Determine probabilistic outcomes

These technologies have already had a revolutionary impact.

We have argued that are principled ways of constructing
constraint solvers

There are also many unconventional uses for constraint solving

Building and integrating scalable solvers is an ongoing
challenge.

Natarajan Shankar Using Constraint Solvers in Interactive and Automated Theorem Proving53


