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Introduction 

• Discovering rare behaviours of stochastic models is an 
unsolved challenge. 

 

 

 

 

 

 

 

• Several Domains:  

• Biomedical Devices,  

• Intelligent Automobiles,  

• Autonomous Robots  

 

Artificial Pancreas Infectious Disease Space Vehicle 



Why Stochastic Models? - I 

• Even when models are deterministic 

• The environment is quite complex e.g. road conditions 

• Stochastic models capture the unpredictability of 
inputs to the embedded system. 

Model of Embedded System Unpredictable environment 



Why Stochastic Models? - II 

• Complex life-critical embedded systems 

• Must be proved correct when interacting with 
fundamentally stochastic systems 

• Biochemical environment models are fundamentally 
stochastic 

Insulin Metabolism Artificial Pancreas 



Why Stochastic Models? - III 

• Models of Complex “Intelligent” Software are inherently 
stochastic 

• E.g. Computer Vision algorithms, Machine Learning, Voice 
Recognition, Feature Extraction 

Stereoscopic Camera 

for computer vision 



Why Study Stochastic Models ? 

• 32,000 Americans diagnosed with 

Pancreatic Cancer yearly. 

 

• Almost all of them will die! 

 

• Bits and pieces of stochastic 

biochemical models available! 

• Next generation vehicles (will) 

do lane tracking, etc. 

 

• Modify user inputs “if 

necessary” ? 

 

•Stochastic models of human 

behavior! 

• In 2007, Lehman made $4 

billion in profits.  

 

• It lost $3 billion in the spring 

and then another $4 billion in 

the following summer. 



Why Study Rare Behaviors ? 

 

 

 

 

 

 

 

 

 

• Rare but interesting or important behaviors 

• formation of a tumor,  

• spreading of infectious diseases,  

• failure of cyber-physical system 

 



Stochastic Model Simulation 

Stochastic Model : 

• Naturally equipped with a well defined 

probability space. 

• Example: DTMCs, CTMCs, SDEs 

– Deterministic Simulink Models with 

probabilistic inputs 

– Probabilistic Simulink Models 

• Not an example: 

– Markov Decision Processes 

– C Programs 

– Digital Circuits 

Model M 



SDE Models 

 

• The form of a typical SDE: 

• dX = b(t, X) dt + v(t, X) dW 

where 

– X is a system variable 

– b is Riemann integrable function 

– v is Ito integrable 

– W is Brownian Motion 

 

 

 



Why SDE models? 

 

• Model dynamics of complex “less understood” systems. 

 

 

• Investigation of biological phenomena and cyber-
physical systems 

• sensitive to stochastic effects.  



Stochastic Model Verification 

Behavioral Specification φ should be decidable on a 

finite sample trace of the model M. 

• Example: 

– Bounded Linear Temporal Logic 

– Finite Sate Machine Specifications 

– “Sun will rise in the east within 24 

hours” 

• Not an example:  

– “Eventually, the sun will rise in the west 

some day.” 

SDE Model 

M 

Behavioral 

Spec. φ 



Statistical Model Verification 
• Samples Xi should be 

independent and identically 

distributed (i.i.d.) according to 

the model M. 

• Xi = 1 if the sample 

satisfies specification φ; 

0 otherwise. 

• Example: 

• i.i.d. random sampling 

of Simulink models 

• Not an example: 

• Rare event simulation. 

• Symbolic Testing 

Strategies 

SDE Model 

M 
Samples  

X1,…,Xn 

Behavioral 

Spec. φ 



Statistical Model Verification 

Model M 

Probability Threshold  

ρ 

MC 

Algorithm 

True 

False 

Sample 

Traces 

Behavioral 

Spec. φ 



State of the Art: Statistical 

• Statistical Estimation: 

• Given samples from a stochastic system, 

• Compute the probability that a system satisfies a 
given property. 

• Statistical Hypothesis Testing: 

• Given a required confidence in the answer and a 
threshold probability 

• Draw as many samples as needed to decide  

–whether a stochastic system satisfies a given 
property with at least a threshold probability? 

• Both approaches are really useless for rare but 
interesting behaviors 



State of the Art: Statistical 

• Use Girsanov’s theorem to change probability 
measures and then use statistical sampling to explore 
rare behaviors 

 

• Sumit K. Jha and Christopher Langmead 

  Understanding rare behaviors in stochastic biological 
 models 

 Best Paper at IEEE International Conference on 
 Computational Advances in Bio and Biomedical 
 systems 

 Journal Version: BMC Bioinformatics 

 

• Tries to explore rare behaviors but not a given rare 
behavior 



Our New Approach - I 
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Our Approach – II (RESERCHE) 
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Bit-Vector 
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Our Approach – II (RESERCHE) 
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Bit-Vector 
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Bit-Vector SMT formula 



Our Approach – II (RESERCHE) 
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Our Approach – II (RESERCHE) 
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Our Approach – II (RESERCHE) 
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Our Approach - III 

• SDE to Bit-Vector SMT formula 

 

• Discrete Difference Equation 

 

 

• ΔW is increment in Brownian motion 

–Normally distributed 

–with mean 0 

–and variance 1 

 

• tk+1 – tk is increment in time 

 



Intuitive Argument 

• Large values of Brownian motion increments 

       smaller probability densities 

• Small values of Brownian motion increments  

      large probability densities 

 

A behavior has high probability density if it corresponds to 
small values of Brownian motion increments 

 

 



Intuitive Argument 

• Large values of Brownian motion increments 

       smaller probability densities 

• Small values of Brownian motion increments  

      large probability densities 

 

A behavior has high probability density if it corresponds to 
small values of Brownian motion increments 

 

Ask a decision procedure if there is a behavior 
satisfying the given specification with small values of 
Brownian motion increments. 

 



Digging Deeper… 

• The probability density of observing the value Xt1 
after t1 time:  

 

 

 

 

 

• Our results rely on  

• the independence of increments of Brownian 
Motions, and  

• their Gaussian distribution. 

 

 



Digging Deeper… … 
• We compute the probability density of observing the 

sequence of the observed discretized solution given the 
initial value: 

 

 

 

 

 

 

 

 



Digging Deeper… … 
• We compute the probability density of observing the 

sequence of the observed discretized solution given the 
initial value: 

 

 

 

 

 

 

 

 

• We need to minimize the sum of squares of Brownian 
motion increments! 



Concerns 

• A key concern in discretizing SDE is the error 
introduced by sampling a continuous system and 
replacing a SDE with a discretized difference equation. 

 

• The existence and uniqueness of SDE ensures that the 
solution of an infinitely discretized SDE is the solution 
of the continuous SDE. 

 

• What is sufficiently discretized? 

• 100, 1000, 10^4,…,10^100 

• Stochastic mean value theorem and rate of 
convergence for various drift and diffusion. 



Discretizing SDE vs. ODE 

• Does a point lie on the trajectory of an ODE? 

• Not answerable in general 

• Works in practice; Lipschitz Continuity 

• Does a point lie on some path of a SDE?  

• Yes 

 

• Discretizing ODEs is fine with knowledge of 
Lipschitz constants 

• Discretizing SDEs is fine with knowledge of 
Lipschitz constants for drift and diffusion 



Case Study – High Level View  



Experiments - I 

SARS: The number of infected people vs. Time plot. 

ln(prob. density) 

= -2.4e+008 

Above prob. density is calculated when the number of infected 

people is more than 150 and less than 200 at the end of 40 time 

steps. Initially, no of infected people = 1 



Experiments - II 

SARS: The number of infected people vs. Time plot. 

No. of time steps = 200 



Case Study – High Level View  



Conclusion 

• Algorithm for efficiently investigating rare behaviors in 
SDE models. 

–It avoids the computational costs associated 
with sampling  

• by searching for trajectories from the model that satisfy a 
given behavioral specification. 

 

–Only generates trajectories that exhibit the 
behavior. 

 

• Our method takes advantage of the efficiency and 
power of the modern SMT-solvers. 

 



Future Work 

• Studying the use of decision procedures to analyze 
closed form solutions to SDEs.  

• Many practical applications require the study of the 
system where one component is SDE and the 
other component is a finite state controller.  

–Biologically important cyber-physical systems 
like artificial pancreas. 

• Specialized decision procedures  

• Sum of Squares 

• Grobner Bases 

• Nonlinear SMT 

• Extensive parallelization.  



Future Work 

• Integrated Circuit Performance 

 

• Artificial Pancreata 

 

• Computational Finance 

 

• Autonomous Vehicles 



Synthetic Biology 

Genetic Similarity – Phenotypic Diversity 



Synthetic Biology 

FlavrSavr – Evolving away from synthetic target 


