
Post-Silicon Debugging of Many-Core

Systems by Identifying Execution

Paths Through Constraint Refinement

Amir Masoud Gharehbaghi

 and Masahiro Fujita

VLSI Design and Education Center (VDEC),

University of Tokyo

CREST, Japan Science and Technology

(JST)

VLSI Design and Education Center (VDEC), University of Tokyo

Summary
 Targeting post-silicon

debug for SoC

 Use tracer with
buffers for
communication and
also transaction level
models
 This give a set of

potential execution
paths

 Buffered traces are
examined off-line
with BMC (ESBMC)
 Try to extract the real

execution path
2

PE PE

PE PE

PE PE

PE PE

Consumer Portable SoC Template [Source: ITRS 2007]

Peripherals

Main

Mem

-ory Processor Processor

Processor Processor

#Processing Engines in Consumer Portable SoCs [Source: ITRS 2007]

Automatically buffer
communication
/transaction traces

Buffered traces are
examined off-line

VLSI Design and Education Center (VDEC), University of Tokyo

Extracted paths

 Traces represent multiple paths which share

a set of states that do communications

 Use BMC (ESBMC) to examine the above

3

…

…

…

…

…

Identified by communication traces

Unknown state transition sequences

= Must be determined (narrowed) by BMC

VLSI Design and Education Center (VDEC), University of Tokyo

Outline

 Introduction

 Overview of our method

 Transaction-level state machine

 Transaction-level backtracking and debug

 Path generation

 Bug localization

 Experimental results

 Conclusions

4

VLSI Design and Education Center (VDEC), University of Tokyo

Introduction

 Complexity of modern SoCs is increasing

 Number of cores is increasing (over 1,000 !)

 Cores themselves maybe very complicated

 Communication among cores becomes

more and more complicated

 Multiple concurrent transactions

 Bugs may escape from pre-silicon to

prototype or even to final system

 Post-Silicon debug is becoming a major task

 Takes more than 50% of overall design time

5

VLSI Design and Education Center (VDEC), University of Tokyo

Our Approach

 Focus on functional bugs

 Consider communications among cores

 Can be observed by monitoring communication

channels (buses, NoCs, …)

 Link between chip transactions and high-

level transactions

 Assuming transaction-level design exists

 Post-silicon debug with transaction-level analysis

 Backtrack in transaction-level design

 Transaction-level path generation

 Formal path analysis and constraint refinement
6

VLSI Design and Education Center (VDEC), University of Tokyo

Overview of Our Method

Module 2
Module 1

Module N

Channel

Module 2
Module 1

Module N

NoC,

Bus, …

Refinement and

Synthesis

Transaction

Monitoring &

Trace Buffers

TL State

Machine1

TL State

Machine2

TL State

MachineN
…

Read Out

Trace

File(s)

Debug Process

(Backtracking)

…

…

Backtracking

Report

7

Manual translation
(plan to automate)

Has been automated

C3E7J4

VLSI Design and Education Center (VDEC), University of Tokyo

Post-Silicon Debug Flow

1) Extract transaction-level

behavior of modules from

their TLM codes.

2) Instrument the hardware by

adding monitoring modules

and trace buffers to save

transaction information

during system operation.

8

Module 2
Module 1

Module N

Channel

Module 2
Module 1

Module N

NoC,

Bus, …

Refinement and

Synthesis

Transaction

Monitoring &

Trace Buffers

TL State

Machine1

TL State

Machine2

TL State

MachineN
…

Read Out

Trace

File(s)

Debug Process

(Backtracking)

…

…

Backtracking

Report

3) Extract the transaction-level Run the system until a crash or

failure state is reached or an error is detected.

4) Read the contents of the trace buffers and also the last

state of the modules.

5) Run the debug process to backtrack in transaction-level

states of the modules to find the bug(s).

VLSI Design and Education Center (VDEC), University of Tokyo

Transaction Monitoring

 Extract transaction information from signal events

 General data

 Initiator, target, command(read/write)

 Application-specific data

 Monitoring circuit generation requires

 Communication protocol

 Application-specific data

 Trace buffer(s) contents

initiator ID target ID target Addr Command Data

9

VLSI Design and Education Center (VDEC), University of Tokyo

Transaction-Level State Machine

 For each module (core) extract one state machine

 System consists of several concurrent state machines

 States correspond to high-level behavior of module

 Transition between states happens when a

transaction is received and a pre-condition holds

 Pre-conditions (or guard expressions) only depend

on internal variables/signals

 Transition between two states may result in an

action that is initiating (sending) a transaction

10

State i State j
Transaction

(communication)

{Pre-condition}

Actions

VLSI Design and Education Center (VDEC), University of Tokyo

TLSM Example

11

 int cntr = 0;

While(1) {

 switch(state) {

…

case ST_x:

 wait_packet(pkt_i);

 if (pkt_i.type == PKT_ACK)

 cntr++;

 if (cntr > K) {

 state = ST_y;

 // prepare data to be sent

 send_packet(pkt_o);

 }

 break;

case ST_y:

…

}

}

cntr++;

if (cntr > K) {

// prepare data to be sent

state = ST_y;

}

G1/rec_pkt_a G2/snd_pkt_b

~G2/rcv_pkt_a

G1: state = ST_x

G2: cntr > k

A

VLSI Design and Education Center (VDEC), University of Tokyo

TLSM Formal Definition

 TLSM = (Ei, Eo,S, s0, G, T, A)

 Ei is set of input events (transactions)

 Eo is set of output events (transactions)

 S is set of states

 s0 is the initial state and belongs to S

 G is set of guard conditions

 T is transition function: Ei*G*S -> S

 A is action function: Ei*G*S -> Eo

12

VLSI Design and Education Center (VDEC), University of Tokyo

TLSM Extraction

 Determine the functions for extraction process

 Functions dealing with state variable(s) and also

handling incoming and outgoing transactions

 Convert the TLM/SystemC/C++ code to a pure C

code that represents the functionality dealing with

state variable(s) and also the transactions

 Extract the TLSM states and their corresponding C

code as a function

 Abstract all the internal functionality

 Abstract the extracted code for the backtrack and

analysis process

13

VLSI Design and Education Center (VDEC), University of Tokyo

Some TLSM Extraction Details

 Some functionality of the modules are

abstracted

 User can define which parts to be abstracted

 Some variable values may be replaced with new

symbolic variables

 All assignments to those variables are ignored

 User may specify some constraint on the abstracted

variables

 Some functions may be abstracted as uninterpreted

functions

 All the code inside those functions are ignored

 User may specify some constraint on return value of the

abstrated functions

14

VLSI Design and Education Center (VDEC), University of Tokyo

Some TLSM Extraction Details (2)

 C++ libraries (for example STL) are converted to

their equivalent C codes

 Also introducing bounds for some data structures such

as array, list, … that can be unbound in their original

form

 Considering specific coding style for using

SystemC/TLM constructs to ease automation

15

Currently manual process (automatic program in development)

Need to decide which functions to be abstracted away

VLSI Design and Education Center (VDEC), University of Tokyo

TLSM Extraction Example

case ST_RELEASING:

if (counter != locked_list_size) {

 packet.src_dest =

locked_list[counter];

 packet.cmd = DL_FREE;

 packet.data = 0;

 send_packet(packet);

 counter++;

}

else {

 if (ub_cond_size == 0) {

 state = ST_IDLE;

 counter = -1;

 succ_list_size = 0;

 pred_list_size = 0;

 locked_list_size = 0;

 }

 else {

 state = ST_WAIT_TO_LOCK;

 k = some_func1();

 counter = locked_list_size;

 }

 ub_cond_size = 0;

}

16

VLSI Design and Education Center (VDEC), University of Tokyo

TLSM Extraction Example (2)

struct packet_info main_process_ST_RELEASING_simple();

struct packet_info main_process_ST_RELEASING_abs(char g1, char g2)

{ // g1: mp_counter != locked_list_size // g2: ub_cond_size == 0

 struct packet_info packet; packet.cmd = CMD_NONE;

 assert (state == ST_RELEASING);

 if (g1) {

 packet.src_dest = nondet_int(); packet.cmd = DL_FREE;

 packet.data = 0; }

 else {

 if (g2) { state = ST_IDLE; }

 else { state = ST_WAIT_TO_LOCK; }

 }

 return packet;

}

17

VLSI Design and Education Center (VDEC), University of Tokyo

Debug Process

 Debugging is performed using:

 The trace file

 The extracted TLSM(s)

 The last state of the target module(s)

 Two phase process

 Phase 1: path generation (for transaction-level

backtracking)

 Find bugs according to transaction behavior of the

system

 Phase 2: path solver (bug localization)

 Find cause of the bugs in more details according to the

abstracted functionality

18

VLSI Design and Education Center (VDEC), University of Tokyo

Path Generation

 Path generation is exercised using:

 The trace file

 The extracted TLSM(s)

 The last state of the module(s)

 Beginning from the last state

 Following the observed transactions, find:

 Possible (potential) previous states

 Corresponding guard expressions

 Generate the output for path solver process

to see if the path is actually feasible or not

19

VLSI Design and Education Center (VDEC), University of Tokyo

Extracted paths

 Represent multiple paths which share a set

of states

20

…

…

…

…

…

Identified by communication traces

Unknown state transition sequences

= Must be determined (narrowed) by BMC

VLSI Design and Education Center (VDEC), University of Tokyo

Path Generation Example

rec_rep_1.cmd = DL_REPORT;

rec_rep_2.cmd = DL_REPORT;

…

state = ST_DEADLOCK_DETECTION;

st_dd_g1_1 = 1;

st_dd_g1_2 = 1;

dl_wgh_g1_1 = nondet_uchar() % 2;

…

ret_00 =

main_process_ST_DEADLOCK_DETECTION_abs(st_dd_g1_1);

assert(ret_00.cmd == DL_CALL);

…

assert(state == ST_DEADLOCK_DETECTION);

21

VLSI Design and Education Center (VDEC), University of Tokyo

Path Solver

 For each generated path consider the actual

functionality to find the bug

 Using BMC to find the values of internal variables

 Interactive process

 User should specify

 Start and end of path (length of path)

 Constraints on internal variables and the possible initial

values (if known!)

 Additional assertions to be checked

 Abstraction of functionality is necessary because

of limitations of BMC

22

VLSI Design and Education Center (VDEC), University of Tokyo

Path Solver Example

tileID = 16;

state = nondet_uint() % (ST_DEADLOCK_RESOLUTION+1);

__ESBMC_assume(state >= ST_IDLE && state <=

ST_DEADLOCK_RESOLUTION);

weight_up = nondet_uint();

weight_dn = nondet_uint();

__ESBMC_assume(weight_dn != 0);

__ESBMC_assume(weight_up <= weight_dn);

…

state = ST_DEADLOCK_DETECTION;

g_is_deadlock_detection_active = 1;

 23

VLSI Design and Education Center (VDEC), University of Tokyo

Path Solver Example (2)

__ESBMC_assume(mp_counter != succ_list_size);

ret_00 =

main_process_ST_DEADLOCK_DETECTION_simple(rand

om_val_00);

assert(ret_00.cmd == DL_CALL);

__ESBMC_assume(ret_00.src_dest == 11);

__ESBMC_assume(ret_00.data == 268439554);

…

assert(weight_dn != weight_up);

…

assert(state != ST_DEADLOCK_DETECTION);

24

VLSI Design and Education Center (VDEC), University of Tokyo

Case Study

 A Distributed Deadlock Detection and

Resolution algorithm

 Several modules access shared resources

 Each module locks its required resources,

does some (dummy) operation and releases

them

 If locking is unsuccessful, a deadlock may

have happened

 One of the modules begin deadlock

detection and resolution

25

VLSI Design and Education Center (VDEC), University of Tokyo

Deadlock Detection Overview

 Node 1 is the initiator of the

detection and resolution

process

 Solid lines represent query

command to ask locked

resources of each core

 Dashed lines show

responses that are sent

from each core to the

initiator node (node 1)

 Finally, core 1 can

determine from information

from all other cores whether

a deadlock is happened and

how to (efficiently) resolve it

26

VLSI Design and Education Center (VDEC), University of Tokyo

TLSM of Case Study

 Three concurrent processes are considered

for TLSM extraction

 Controlling state machine process

 Lock/free handling process

 Deadlock detection/handling process

 Overall about 620 lines of code

 TLSM consists of:

 8 states

 121 transitions

 22 different guard expressions

27

VLSI Design and Education Center (VDEC), University of Tokyo

Experimental Setup

 Modules with deadlock detection and resolution

capability are implemented at transaction level

 Whole system consists of 25 modules in a 5*5

mesh NoC

 Nirgam NoC simulator is used for the network

 Whole system is simulated for 1000 cycles and

transactions are logged during simulation

 Path generation process is implemented as a C++

program

 For bug localization, the ESBMC tool is used as

our BMC engine and Z3 as SMT solver

28

VLSI Design and Education Center (VDEC), University of Tokyo

Description of Bugs (1)

 Bug 1:

 When the release request is sent to the module that has

started the deadlock detection, it did not work.

 Incorrect sequence of transactions (observed and

used in the path generation process):

 sequence of sending and receiving release request by

the module that has started the deadlock detection and

resolution

 Constraint found during path analysis:

 after sending the release command, the state does not

change to the state for releasing the resources

 Cause of the bug:

 This case has not been implemented
29

VLSI Design and Education Center (VDEC), University of Tokyo

Description of Bugs (2)

 Bug 2:

 beginning the deadlock resolution process before

getting all the required information from other modules.

 Incorrect sequence of transactions (observed and

used in the path generation process):

 receiving a deadlock query response from a module

after sending a deadlock resolution command to another

module

 Constraint found during path analysis:

 One of the internal variables for detecting the end of

process becomes incorrectly more than 1

 Cause of the bug:

 2 responses are received incorrectly from a module
30

VLSI Design and Education Center (VDEC), University of Tokyo

Description of Bugs (3)

 Bug 3:

 not beginning the deadlock resolution procedure.

 Incorrect sequence of transactions (observed and

used in the path generation process):

 one of the modules does not respond to the initiator

module (a missing transaction)

 Constraint found during path analysis:

 overflow of one of the internal lists!

 Cause of the bug:

 A problem in the implementation of the network!

31

VLSI Design and Education Center (VDEC), University of Tokyo

Experimental Results

32

VLSI Design and Education Center (VDEC), University of Tokyo

Conclusions

 We have presented a transaction-level post-

silicon debug method that employs:

 Transaction-level design information

 Transaction information that is extracted during

the system run

 We have introduced the transaction-level

state machine and a mechanism to

backtrack in transaction-level states

 Furthermore, we have used a mechanism to

find constraints on internal variables of

modules to pinpoint the bug
33

Thank You!

Questions?

34

