
Post-Silicon Debugging of Many-Core

Systems by Identifying Execution

Paths Through Constraint Refinement

Amir Masoud Gharehbaghi

 and Masahiro Fujita

VLSI Design and Education Center (VDEC),

University of Tokyo

CREST, Japan Science and Technology

(JST)

VLSI Design and Education Center (VDEC), University of Tokyo

Summary
 Targeting post-silicon

debug for SoC

 Use tracer with
buffers for
communication and
also transaction level
models
 This give a set of

potential execution
paths

 Buffered traces are
examined off-line
with BMC (ESBMC)
 Try to extract the real

execution path
2

PE PE

PE PE

PE PE

PE PE

Consumer Portable SoC Template [Source: ITRS 2007]

Peripherals

Main

Mem

-ory Processor Processor

Processor Processor

#Processing Engines in Consumer Portable SoCs [Source: ITRS 2007]

Automatically buffer
communication
/transaction traces

Buffered traces are
examined off-line

VLSI Design and Education Center (VDEC), University of Tokyo

Extracted paths

 Traces represent multiple paths which share

a set of states that do communications

 Use BMC (ESBMC) to examine the above

3

…

…

…

…

…

Identified by communication traces

Unknown state transition sequences

= Must be determined (narrowed) by BMC

VLSI Design and Education Center (VDEC), University of Tokyo

Outline

 Introduction

 Overview of our method

 Transaction-level state machine

 Transaction-level backtracking and debug

 Path generation

 Bug localization

 Experimental results

 Conclusions

4

VLSI Design and Education Center (VDEC), University of Tokyo

Introduction

 Complexity of modern SoCs is increasing

 Number of cores is increasing (over 1,000 !)

 Cores themselves maybe very complicated

 Communication among cores becomes

more and more complicated

 Multiple concurrent transactions

 Bugs may escape from pre-silicon to

prototype or even to final system

 Post-Silicon debug is becoming a major task

 Takes more than 50% of overall design time

5

VLSI Design and Education Center (VDEC), University of Tokyo

Our Approach

 Focus on functional bugs

 Consider communications among cores

 Can be observed by monitoring communication

channels (buses, NoCs, …)

 Link between chip transactions and high-

level transactions

 Assuming transaction-level design exists

 Post-silicon debug with transaction-level analysis

 Backtrack in transaction-level design

 Transaction-level path generation

 Formal path analysis and constraint refinement
6

VLSI Design and Education Center (VDEC), University of Tokyo

Overview of Our Method

Module 2
Module 1

Module N

Channel

Module 2
Module 1

Module N

NoC,

Bus, …

Refinement and

Synthesis

Transaction

Monitoring &

Trace Buffers

TL State

Machine1

TL State

Machine2

TL State

MachineN
…

Read Out

Trace

File(s)

Debug Process

(Backtracking)

…

…

Backtracking

Report

7

Manual translation
(plan to automate)

Has been automated

C3E7J4

VLSI Design and Education Center (VDEC), University of Tokyo

Post-Silicon Debug Flow

1) Extract transaction-level

behavior of modules from

their TLM codes.

2) Instrument the hardware by

adding monitoring modules

and trace buffers to save

transaction information

during system operation.

8

Module 2
Module 1

Module N

Channel

Module 2
Module 1

Module N

NoC,

Bus, …

Refinement and

Synthesis

Transaction

Monitoring &

Trace Buffers

TL State

Machine1

TL State

Machine2

TL State

MachineN
…

Read Out

Trace

File(s)

Debug Process

(Backtracking)

…

…

Backtracking

Report

3) Extract the transaction-level Run the system until a crash or

failure state is reached or an error is detected.

4) Read the contents of the trace buffers and also the last

state of the modules.

5) Run the debug process to backtrack in transaction-level

states of the modules to find the bug(s).

VLSI Design and Education Center (VDEC), University of Tokyo

Transaction Monitoring

 Extract transaction information from signal events

 General data

 Initiator, target, command(read/write)

 Application-specific data

 Monitoring circuit generation requires

 Communication protocol

 Application-specific data

 Trace buffer(s) contents

initiator ID target ID target Addr Command Data

9

VLSI Design and Education Center (VDEC), University of Tokyo

Transaction-Level State Machine

 For each module (core) extract one state machine

 System consists of several concurrent state machines

 States correspond to high-level behavior of module

 Transition between states happens when a

transaction is received and a pre-condition holds

 Pre-conditions (or guard expressions) only depend

on internal variables/signals

 Transition between two states may result in an

action that is initiating (sending) a transaction

10

State i State j
Transaction

(communication)

{Pre-condition}

Actions

VLSI Design and Education Center (VDEC), University of Tokyo

TLSM Example

11

 int cntr = 0;

While(1) {

 switch(state) {

…

case ST_x:

 wait_packet(pkt_i);

 if (pkt_i.type == PKT_ACK)

 cntr++;

 if (cntr > K) {

 state = ST_y;

 // prepare data to be sent

 send_packet(pkt_o);

 }

 break;

case ST_y:

…

}

}

cntr++;

if (cntr > K) {

// prepare data to be sent

state = ST_y;

}

G1/rec_pkt_a G2/snd_pkt_b

~G2/rcv_pkt_a

G1: state = ST_x

G2: cntr > k

A

VLSI Design and Education Center (VDEC), University of Tokyo

TLSM Formal Definition

 TLSM = (Ei, Eo,S, s0, G, T, A)

 Ei is set of input events (transactions)

 Eo is set of output events (transactions)

 S is set of states

 s0 is the initial state and belongs to S

 G is set of guard conditions

 T is transition function: Ei*G*S -> S

 A is action function: Ei*G*S -> Eo

12

VLSI Design and Education Center (VDEC), University of Tokyo

TLSM Extraction

 Determine the functions for extraction process

 Functions dealing with state variable(s) and also

handling incoming and outgoing transactions

 Convert the TLM/SystemC/C++ code to a pure C

code that represents the functionality dealing with

state variable(s) and also the transactions

 Extract the TLSM states and their corresponding C

code as a function

 Abstract all the internal functionality

 Abstract the extracted code for the backtrack and

analysis process

13

VLSI Design and Education Center (VDEC), University of Tokyo

Some TLSM Extraction Details

 Some functionality of the modules are

abstracted

 User can define which parts to be abstracted

 Some variable values may be replaced with new

symbolic variables

 All assignments to those variables are ignored

 User may specify some constraint on the abstracted

variables

 Some functions may be abstracted as uninterpreted

functions

 All the code inside those functions are ignored

 User may specify some constraint on return value of the

abstrated functions

14

VLSI Design and Education Center (VDEC), University of Tokyo

Some TLSM Extraction Details (2)

 C++ libraries (for example STL) are converted to

their equivalent C codes

 Also introducing bounds for some data structures such

as array, list, … that can be unbound in their original

form

 Considering specific coding style for using

SystemC/TLM constructs to ease automation

15

Currently manual process (automatic program in development)

Need to decide which functions to be abstracted away

VLSI Design and Education Center (VDEC), University of Tokyo

TLSM Extraction Example

case ST_RELEASING:

if (counter != locked_list_size) {

 packet.src_dest =

locked_list[counter];

 packet.cmd = DL_FREE;

 packet.data = 0;

 send_packet(packet);

 counter++;

}

else {

 if (ub_cond_size == 0) {

 state = ST_IDLE;

 counter = -1;

 succ_list_size = 0;

 pred_list_size = 0;

 locked_list_size = 0;

 }

 else {

 state = ST_WAIT_TO_LOCK;

 k = some_func1();

 counter = locked_list_size;

 }

 ub_cond_size = 0;

}

16

VLSI Design and Education Center (VDEC), University of Tokyo

TLSM Extraction Example (2)

struct packet_info main_process_ST_RELEASING_simple();

struct packet_info main_process_ST_RELEASING_abs(char g1, char g2)

{ // g1: mp_counter != locked_list_size // g2: ub_cond_size == 0

 struct packet_info packet; packet.cmd = CMD_NONE;

 assert (state == ST_RELEASING);

 if (g1) {

 packet.src_dest = nondet_int(); packet.cmd = DL_FREE;

 packet.data = 0; }

 else {

 if (g2) { state = ST_IDLE; }

 else { state = ST_WAIT_TO_LOCK; }

 }

 return packet;

}

17

VLSI Design and Education Center (VDEC), University of Tokyo

Debug Process

 Debugging is performed using:

 The trace file

 The extracted TLSM(s)

 The last state of the target module(s)

 Two phase process

 Phase 1: path generation (for transaction-level

backtracking)

 Find bugs according to transaction behavior of the

system

 Phase 2: path solver (bug localization)

 Find cause of the bugs in more details according to the

abstracted functionality

18

VLSI Design and Education Center (VDEC), University of Tokyo

Path Generation

 Path generation is exercised using:

 The trace file

 The extracted TLSM(s)

 The last state of the module(s)

 Beginning from the last state

 Following the observed transactions, find:

 Possible (potential) previous states

 Corresponding guard expressions

 Generate the output for path solver process

to see if the path is actually feasible or not

19

VLSI Design and Education Center (VDEC), University of Tokyo

Extracted paths

 Represent multiple paths which share a set

of states

20

…

…

…

…

…

Identified by communication traces

Unknown state transition sequences

= Must be determined (narrowed) by BMC

VLSI Design and Education Center (VDEC), University of Tokyo

Path Generation Example

rec_rep_1.cmd = DL_REPORT;

rec_rep_2.cmd = DL_REPORT;

…

state = ST_DEADLOCK_DETECTION;

st_dd_g1_1 = 1;

st_dd_g1_2 = 1;

dl_wgh_g1_1 = nondet_uchar() % 2;

…

ret_00 =

main_process_ST_DEADLOCK_DETECTION_abs(st_dd_g1_1);

assert(ret_00.cmd == DL_CALL);

…

assert(state == ST_DEADLOCK_DETECTION);

21

VLSI Design and Education Center (VDEC), University of Tokyo

Path Solver

 For each generated path consider the actual

functionality to find the bug

 Using BMC to find the values of internal variables

 Interactive process

 User should specify

 Start and end of path (length of path)

 Constraints on internal variables and the possible initial

values (if known!)

 Additional assertions to be checked

 Abstraction of functionality is necessary because

of limitations of BMC

22

VLSI Design and Education Center (VDEC), University of Tokyo

Path Solver Example

tileID = 16;

state = nondet_uint() % (ST_DEADLOCK_RESOLUTION+1);

__ESBMC_assume(state >= ST_IDLE && state <=

ST_DEADLOCK_RESOLUTION);

weight_up = nondet_uint();

weight_dn = nondet_uint();

__ESBMC_assume(weight_dn != 0);

__ESBMC_assume(weight_up <= weight_dn);

…

state = ST_DEADLOCK_DETECTION;

g_is_deadlock_detection_active = 1;

 23

VLSI Design and Education Center (VDEC), University of Tokyo

Path Solver Example (2)

__ESBMC_assume(mp_counter != succ_list_size);

ret_00 =

main_process_ST_DEADLOCK_DETECTION_simple(rand

om_val_00);

assert(ret_00.cmd == DL_CALL);

__ESBMC_assume(ret_00.src_dest == 11);

__ESBMC_assume(ret_00.data == 268439554);

…

assert(weight_dn != weight_up);

…

assert(state != ST_DEADLOCK_DETECTION);

24

VLSI Design and Education Center (VDEC), University of Tokyo

Case Study

 A Distributed Deadlock Detection and

Resolution algorithm

 Several modules access shared resources

 Each module locks its required resources,

does some (dummy) operation and releases

them

 If locking is unsuccessful, a deadlock may

have happened

 One of the modules begin deadlock

detection and resolution

25

VLSI Design and Education Center (VDEC), University of Tokyo

Deadlock Detection Overview

 Node 1 is the initiator of the

detection and resolution

process

 Solid lines represent query

command to ask locked

resources of each core

 Dashed lines show

responses that are sent

from each core to the

initiator node (node 1)

 Finally, core 1 can

determine from information

from all other cores whether

a deadlock is happened and

how to (efficiently) resolve it

26

VLSI Design and Education Center (VDEC), University of Tokyo

TLSM of Case Study

 Three concurrent processes are considered

for TLSM extraction

 Controlling state machine process

 Lock/free handling process

 Deadlock detection/handling process

 Overall about 620 lines of code

 TLSM consists of:

 8 states

 121 transitions

 22 different guard expressions

27

VLSI Design and Education Center (VDEC), University of Tokyo

Experimental Setup

 Modules with deadlock detection and resolution

capability are implemented at transaction level

 Whole system consists of 25 modules in a 5*5

mesh NoC

 Nirgam NoC simulator is used for the network

 Whole system is simulated for 1000 cycles and

transactions are logged during simulation

 Path generation process is implemented as a C++

program

 For bug localization, the ESBMC tool is used as

our BMC engine and Z3 as SMT solver

28

VLSI Design and Education Center (VDEC), University of Tokyo

Description of Bugs (1)

 Bug 1:

 When the release request is sent to the module that has

started the deadlock detection, it did not work.

 Incorrect sequence of transactions (observed and

used in the path generation process):

 sequence of sending and receiving release request by

the module that has started the deadlock detection and

resolution

 Constraint found during path analysis:

 after sending the release command, the state does not

change to the state for releasing the resources

 Cause of the bug:

 This case has not been implemented
29

VLSI Design and Education Center (VDEC), University of Tokyo

Description of Bugs (2)

 Bug 2:

 beginning the deadlock resolution process before

getting all the required information from other modules.

 Incorrect sequence of transactions (observed and

used in the path generation process):

 receiving a deadlock query response from a module

after sending a deadlock resolution command to another

module

 Constraint found during path analysis:

 One of the internal variables for detecting the end of

process becomes incorrectly more than 1

 Cause of the bug:

 2 responses are received incorrectly from a module
30

VLSI Design and Education Center (VDEC), University of Tokyo

Description of Bugs (3)

 Bug 3:

 not beginning the deadlock resolution procedure.

 Incorrect sequence of transactions (observed and

used in the path generation process):

 one of the modules does not respond to the initiator

module (a missing transaction)

 Constraint found during path analysis:

 overflow of one of the internal lists!

 Cause of the bug:

 A problem in the implementation of the network!

31

VLSI Design and Education Center (VDEC), University of Tokyo

Experimental Results

32

VLSI Design and Education Center (VDEC), University of Tokyo

Conclusions

 We have presented a transaction-level post-

silicon debug method that employs:

 Transaction-level design information

 Transaction information that is extracted during

the system run

 We have introduced the transaction-level

state machine and a mechanism to

backtrack in transaction-level states

 Furthermore, we have used a mechanism to

find constraints on internal variables of

modules to pinpoint the bug
33

Thank You!

Questions?

34

