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sides should produce equal user-visible states.
Abstract
Rewriting rules and Positive Equality [4] are combined in an
automatic way in order to formally verify out-of-order processors
that have a Reorder Buffer, and can issue/retire multiple instruc-
tions per clock cycle. Only register-register instructions are
implemented, and can be executed out-of-order, as soon as their
data operands can be either read from the Register File, or for-
warded as results of instructions ahead in program order in the
Reorder Buffer. The verification is based on the Burch and Dill
correctness criterion [6]. Rewriting rules are used to prove the
correct execution of instructions that are initially in the Reorder
Buffer, and to remove them from the correctness formula. Posi-
tive Equality is then employed to prove the correct execution of
newly fetched instructions. The rewriting rules resulted in up to 5
orders of magnitude speedup, compared to using Positive Equal-
ity alone. That made it possible to formally verify processors with
up to 1,500 instructions in the Reorder Buffer, and issue/retire
widths of up to 128 instructions per clock cycle.

1 Introduction
The property of Positive Equality [4] allowed the automatic veri-
fication of complex pipelined microprocessors with exceptions,
multicycle functional units, and branch prediction [29][30]. By
restricting the style for describing high-level processors [28], yet
without losing expressive power, we can get a correctness for-
mula where most of the word-level values appear only in positive
(not negated) equalities. These word-level values can be treated
as distinct constants, due to the structure of the formula, thus
allowing us to dramatically prune the solution space. By encod-
ing the remaining word-level equalities (appearing in both posi-
tive and negative polarity) with a new Boolean variable, an eij
variable [8], we can translate the correctness formula into an
equivalent Boolean formula. Recent advances in SAT-checkers
[22][34] have allowed us to efficiently solve such formulas [32].

The formal verification is done by correspondence check-
ing—comparison of an implementation processor against a non-
pipelined specification (the Instruction Set Architecture), based
on the Burch and Dill commutative diagram [6]. The correctness
criterion is expressed as a formula in the logic of Equality with
Uninterpreted Functions and Memories (EUFM) [6] (see Sect. 2)
and states that all user-visible state elements in the implementa-
tion should be updated in sync by either 0, or 1, or up to k
instructions after each clock cycle, where k is the issue width of
the design. An abstraction function is used to map an implemen-
tation state to an equal specification state. Burch and Dill [6]
used flushing—feeding the implementation with bubbles until all
partially executed instructions complete—in order to compute an
abstraction function. The commutative diagram has an imple-
mentation side—one step of the implementation, followed by
application of the abstraction function; and a specification side—
application of the abstraction function on the initial implementa-
tion state, followed by up to k steps of the specification. The two
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Positive Equality has not yet been exploited when formally
verifying out-of-order processors with a Reorder Buffer. Jhala
and McMillan [15] have conjectured that the reason for this is the
complexity of the abstraction function that depends on the entire
machine state.

Rewriting rules have been previously used for verification of
simple single-issue pipelined processors by Levitt and Olukotun
[19][20]. They had to define a large set of such rules—one for
each pipeline stage with a given configuration of features. On the
other hand, all instructions in an abstract out-of-order processor
with a Reorder Buffer are executed by logic with identical struc-
ture, and can be processed by the same set of few rewriting rules.

Rewriting rules and Positive Equality have already been
combined when formally verifying pipelined processors with in-
order execution, exceptions, multicycle functional units, and
branch prediction [31]. In that work, rewriting rules were used in
order to automatically separate the effects of the forwarding and
stalling logic and to abstract the forwarding logic that does not
interact with stalling conditions. That dramatically reduced the
number of equalities appearing in both positive and negated
polarity, i.e., helped to more fully exploit Positive Equality, and
resulted in an order of magnitude speedup.

All previous work on formal verification of out-of-order pro-
cessors [1][2][3][11][13][14][15][16][17][18][21][23][24] has
examined designs that can issue and retire only a single instruc-
tion per clock cycle. In contrast, the processors verified in this
paper can issue and retire up to 128 instructions per clock cycle.
Also, they have up to 1,500 instructions in the Reorder Buffer.
Scaling to larger configurations was limited by the available
physical memory of 4 GB. However, the above numbers are
more than 10 times greater than those in current state-of-the-art
processors. For example, the Intel  Pentium  4 [12] and the
AMD AthlonTM [7] have, respectively, 126 and 72 Reorder
Buffer entries, and can issue/retire up to 3 instructions2 per cycle;
the Alpha 21364 [9] can have up to 80 instructions in flight, and
can issue/retire up to 4 instructions per cycle.

The contribution of this paper is a method for correctness
proof of an out-of-order processor that can issue and retire multi-
ple instructions per cycle. The method has a higher degree of
automation than previous techniques. Manually defined rewrit-
ing rules are applied mechanically to prove that each instruction
initially in the processor will produce equal updates along both
sides of the diagram, so that those equal updates can be removed
from the formula. Then, Positive Equality is exploited automati-
cally to prove that the instructions fetched during the one cycle of
regular operation of the implementation are executed correctly.
Positive Equality reduces the manual effort compared to previous
work, where the entire proofs are constructed by the verification
engineer. Furthermore, the presented method does not require the
definition of an induction hypothesis—also done manually in
previous research—as all entries in the Reorder Buffer are fully
instantiated.

2. Micro-ops, derived from decoding ×86 (IA-32) instructions



2 Background
The correctness EUFM formula is generated automatically, using
a term-level symbolic simulator TLSim [33]. That formula is
then translated to an equivalent Boolean formula by another
automatic tool, EVC [33], which exploits the properties of Posi-
tive Equality [4], the eij encoding [8], conservative transforma-
tions, and rewriting rules. The resulting Boolean formula should
be a tautology in order for the implementation processor to be
correct. We can check this by negating the formula and using a
SAT-checker [22][34] to prove that the negation is unsatisfiable.

The syntax of EUFM [6] includes terms and formulas. Terms
are used in order to abstract word-level values—data operands,
register identifiers, memory addresses, as well as the entire states
of memory arrays. A term can be an Uninterpreted Function (UF)
applied on a list of argument terms; a term variable; or an ITE
operator selecting between two argument terms based on a con-
trolling formula, such that ITE(formula, term1, term2) will eval-
uate to term1 when formula = true and to term2 when formula =
false. Formulas are used in order to model the control path of a
microprocessor, as well as to express the correctness condition. A
formula can be an Uninterpreted Predicate (UP) applied on a list
of argument terms; a propositional variable; an ITE operator
selecting between two argument formulas based on a controlling
formula; or an equation (equality comparison) of two terms. For-
mulas can be negated and connected by Boolean connectives. We
will refer to both terms and formulas as expressions.

UFs and UPs are used to abstract away the implementation
details of functional units by replacing them with “black boxes”
that satisfy no particular properties other than that of functional
consistency. Namely, that equal values of the inputs to the UF
(UP) produce equal output values. Then, it no longer matters
whether the original functional unit is an adder or a multiplier,
etc., as long as the same UF (or UP) is used to replace it in both
the implementation and the specification. Note that in this way
we will prove a more general problem—that the processor is cor-
rect for any implementation of its functional units. However, that
more general problem is easier to prove. 

One scheme for imposing the property of functional consis-
tency of UFs and UPs is by using nested ITEs. The first applica-
tion of some UF, f(a1, b1), is replaced by a new term variable c1.
A second application, f(a2, b2), will be replaced by
ITE((a2 = a1) ∧  (b2 = b1), c1, c2), where c2 is a new term variable,
and so on. UPs are eliminated similarly by using new Boolean
variables, instead of new term variables.

The EUFM syntax for terms can be extended to model mem-
ories (including Register Files) by means of the special uninter-
preted functions read and write [6][28][31]. Function read takes
two terms, serving as memory state and address, respectively,
and returns a term for the data at that address. Function write
takes three terms—memory state, address, and data—and returns
a term for the new memory state after the update. The two func-
tions satisfy the forwarding property of the memory semantics—
a read returns the data written by the last write, if their addresses
are equal, or the data from the previous memory state otherwise.
The initial state of a memory is abstracted with a term variable.

Positive Equality allows the identification of two types of
terms in the structure of an EUFM formula—those which appear
in only positive equations and are called p-terms (for positive
terms), and those which appear in both positive and negative
equations and are called g-terms (for general terms). A negative
equation is one which appears under an odd number of negations
or as part of the controlling formula for an ITE operator. The effi-
ciency from exploiting Positive Equality is due to the observation
that the truth of an EUFM formula under a maximally diverse
interpretation of the p-terms implies the truth of the formula
under any interpretation. A maximally diverse interpretation is
one where the equality comparison of a term variable with itself
2

evaluates to true, that of a p-term variable with a syntactically
distinct term variable evaluates to false, and that of a g-term vari-
able with a syntactically distinct g-term variable could be either
true or false and is encoded with a new eij Boolean variable.

3 Microarchitecture to be Formally Verified
The out-of-order implementation processor to be formally veri-
fied is shown in Fig. 1. The design can execute only register-reg-
ister instructions. Up to k of them are fetched in program order
by the Fetch Engine on every clock cycle, where k is the issue
width of the design. The newly fetched instructions are placed at
the end of the Reorder Buffer (ROB), a FIFO structure that main-
tains the program order of the instructions. The actual number of
fetched instructions is determined by the Scheduler, based on the
available ROB entries and structural resources (decoding units,
buses, etc.), the state of the processor, and the implemented
scheduling algorithm. The Scheduler communicates that number
by signals fetchi, for 1 ≤ i ≤ k. The Fetch Engine also computes
the next value of the Program Counter (PC), based on the values
of signals fetchi. Every instruction has five fields: a Valid bit,
indicating whether the instruction will update the Register File;
an Opcode; a destination register Dest; and two source registers,
Src1 and Src2. The Fetch Engine gets the instructions from a
read-only Instruction Memory.

Figure 1: Block diagram of the implementation processor.

Every entry in the ROB has the same fields as an instruction,
as well as a ValidResult bit, indicating whether the result of the
instruction has been computed, in which case it is stored in field
Result. Instructions are executed out of program order, as soon as
their operands can be either read from the Register File or for-
warded from the Result fields of preceding entries in the ROB,
i.e., from instructions ahead in program order. A similar out-of-
order design is described by Hennessy and Patterson [10]
(pages 309–310). Another out-of-order processor where the ROB
contains all information necessary for instruction execution is
presented by Sohi [26].

Up to l instructions are retired in program order on every
clock cycle, i.e., they are removed from the beginning of the
ROB. An instruction among the first l in the ROB is retired if
either its Valid bit is false (the instruction will not modify the
Register File), or its ValidResult bit is true (its result has been
computed) and all instructions ahead are retired in the current
cycle. This condition is illustrated by formula (1) for the second
instruction in an ROB. If the Valid bit of an instruction that is
being retired is true, then its result is written, in program order,
to the instruction’s destination register in the Register File.
In-order retirement will allow us to incorporate precise excep-
tions, as discussed by Smith and Pleszkun [25]: an exception will
be processed only when its instruction enters the retire width, and
no older instruction has raised an exception. That is how precise
exceptions are implemented in the Intel  Pentium  4 [12].
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To simplify the presentation in the rest of the paper, we will
assume that the issue width k and the retire width l are equal.
However, the presented method does not depend on this.

The user-visible state consists of the PC and Register File.
The specification processor executes one instruction per clock
cycle by fetching the instruction from the same read-only
Instruction Memory, incrementing the PC, computing the ALU
result, and writing it to the destination register in the Register
File under the condition that the instruction’s Valid bit is true.

4 Abstracting the Out-Of-Order Core
The scheduling logic that controls how many instructions to fetch
in program order (up to the issue width k) during the single step
of regular operation of the implementation processor is
abstracted with k new Boolean variables, NDFetchi, 1 ≤ i ≤ k.
Signal fetchi that determines whether to fetch instruction i,
for 1 ≤ i ≤ k, is formed as the conjunction of variables NDFetchj,
where 1 ≤ j ≤ i. Signals fetchi are non-deterministic (can be either
true or false) and satisfy the property that if fetchi is false, then
all fetchj after it (i < j ≤ k) are false. Hence, up to k instructions
will be fetched in program order.

The ROB is abstracted with N + k latches. The first N of them
hold information about instructions that are initially in the ROB.
The logic for preventing data hazards by stalling the execution of
an instruction until its data operands can be either read from the
Register File or forwarded from preceding entries in the ROB is
fully implemented. So is the logic for retiring the first k instruc-
tions in program order. The additional k latches will accept any
newly fetched instructions. The Valid bits for the newly fetched
instructions will be formed as the conjunction of the original
Valid signals coming from the Instruction Memory and the corre-
sponding signal fetchi. Hence, the above abstraction of an ROB
will simulate all possible behaviors of adding/removing instruc-
tions in any actual implementation with size N and issue/retire
width of k during one cycle of regular operation. This suffices for
checking the safety property of an out-of-order processor with an
ROB—if the processor does something in the single cycle of reg-
ular operation, it will do it correctly. The focus of this paper is on
how to efficiently process the complex EUFM correctness for-
mulas, generated in checking this safety property. The synthesis
of a fully operational ROB will be addressed in future work.

The execution of the instructions in the ROB is abstracted
with identical computation slices. During the single cycle of reg-
ular operation of the implementation processor, instruction i that
is ready for execution is completed non-deterministically, as
determined by a new Boolean variable, NDExecutei, that is used
to abstract signal executei in Fig. 1, for 1 ≤ i ≤ N. An instruction
is ready for execution if its Valid bit is true, its ValidResult bit is
false (the result is not computed yet), and the instruction’s data
operands can be either read from the Register File or forwarded
from the Result fields of preceding entries in the ROB. If an
instruction is completed, its ALU result is stored in field Result
of the instruction’s ROB entry, and the ValidResult bit in that
entry is set to true. Note that instructions can execute out-of-
order, as long as their data dependencies can be satisfied.

The above computation slices are similar to the way that
Hosabettu, et al. [13][14] abstract the execution of instructions.
Since the completion of every ready instruction is non-determin-
istic, the abstract out-of-order processor will simulate the behav-
ior of any actual implementation that will be able to execute only
a subset of the ready instructions, due to structural hazards, e.g.,
a limited number of functional units or data buses. Also, note that
the non-deterministic completion of ready instructions abstracts
the behavior of multicycle functional units, each of which could
finish a computation during the single cycle of regular operation
of the implementation processor.

When the abstraction function is applied to the state of the
implementation processor, signal flush is set to true (it is false
3

during regular operation), and the computation slices are acti-
vated one by one in program order, according to the ordering of
the ROB entries. For an activated slice, if the ValidResult bit is
true, the data in the Result field is written to the instruction’s
destination register, Dest, in the Register File. Otherwise, if the
ValidResult bit is false, the data operands are read directly from
the Register File, the result is computed instantaneously (all
ALUs are abstracted with the same UF) and is written to register
Dest in the Register File. In both cases, the writes to the Register
File occur only if the instruction’s Valid bit is true.

The above way to complete the execution of a partially-exe-
cuted instruction is called completion function [13][14]. The
logic computing an instruction’s completion function is included
in the abstract computation slice for that instruction and is
enabled only when signal flush is true. This extra logic will be
optimized away when an actual implementation is synthesized
from the abstract out-of-order processor. Note that all computa-
tion slices have similar structure—they differ only in the logic
for preventing data hazards, as that logic has to consider all
instructions ahead in program order in the ROB.

5 Structure of the Correctness Formulas 
The structure of the correctness formulas will be illustrated for an
implementation processor with 3 ROB entries, and issue/retire
width of 2. Let PC and RegFile be term variables that abstract the
initial state of the PC and Register File, respectively. In this
design, the PC is not changed when the abstraction function is
applied to the initial state of the implementation processor; the
supported register-register instructions modify the PC during
fetching only, but not when already in the ROB. Thus, the initial
state of the PC to be used by the specification processor is:

PCSpec, 0  ←  PC

After one step of the specification, the state of the PC will be:

PCSpec, 1  ←  NextPC(PC)

where NextPC() is an UF abstracting the incrementer of the PC.
And, after another step, the state of the PC will be:

PCSpec, 2  ←  NextPC(PCSpec, 1)

On the implementation side of the diagram, the new state of the
PC will depend on signals fetch1 and fetch2:

PCImpl  ←  ITE(fetch2, NextPC(NextPC(PC)),
ITE(fetch1, NextPC(PC), PC))

where

fetch1  ←  NDFetch1
fetch2  ←  NDFetch1 ∧ NDFetch2

such that NDFetch1 and NDFetch2 are new Boolean variables, as
discussed in Sect. 4. A new Boolean variable is modeled as the
output of an UP with no arguments.

An update is a conditional write operation of the form
ITE(context, write(prevMemState, addr, data), prevMemState),
where context is a formula for the condition under which the
write occurs, prevMemState is an expression for the previous
memory state before the write, and addr and data are expressions
for the address and data of the write. The structure of the expres-
sions for the Register File state after both sides of the commuta-
tive diagram is shown in Fig. 2.a. There, the arrows point to the
previous memory state. Some arrows have a label—the name of
the expression after the previous update. The updates are repre-
sented as triples of the form 〈context, address, data〉. The same
notation for updates was previously used when abstracting mem-
ory arrays at the bit level [27].

Expressions SpecData1, SpecData2, and SpecData3 in
Fig. 2.a are computed by the abstraction function along the spec-



Figure 2: Structure of the expressions for the Register File state in an out-of-order processor with 3 Reorder Buffer entries and
issue/retire width of 2: a) before, and b) after rewriting rules are automatically applied to prove that the instructions initially in the
Reorder Buffer will produce equal updates along both sides of the diagram, allowing the removal of the equal update sequences.
The updates are represented as triples of the form 〈context, address, data〉. The arrows point to the previous Register File state.

specification side: implementation side:

RegFile (term variable for initial state)

〈Valid1 ∧  retire1, Dest1, Result1〉〈Valid1, Dest1, SpecData1〉

〈Valid2, Dest2, SpecData2〉

〈Valid3, Dest3, SpecData3〉

〈Valid2 ∧  retire2, Dest2, Result2〉

〈Valid1 ∧  ¬retire1, Dest1, ImplData1〉

〈Valid2 ∧  ¬retire2, Dest2, ImplData2〉

〈Valid3, Dest3, ImplData3〉

〈update by NewInstrImpl, 1〉

〈update by NewInstrImpl, 2〉

RegFileImpl

RegFileSpec, 0

RegFileSpec, 1

RegFileSpec, 2

〈update by NewInstrSpec, 1〉

〈update by NewInstrSpec, 2〉

specification side: implementation side:

RegFile_equal_state (new term variable)

〈update by NewInstrImpl, 1〉

〈update by NewInstrImpl, 2〉

RegFileImpl

RegFileSpec, 0

RegFileSpec, 1

RegFileSpec, 2

〈update by NewInstrSpec, 1〉

〈update by NewInstrSpec, 2〉

(a) (b)
ification side of the diagram, based on the initial implementation
state. Expressions ImplData1, ImplData2, and ImplData3 are
computed by the abstraction function along the implementation
side of the diagram, based on the implementation state after one
step of regular operation of the implementation processor.

Signals retire1 and retire2 (see Fig. 2.a) are the conditions to
retire, in program order, the first and second instruction, respec-
tively, in the retire width. These signals are defined in the imple-
mentation processor as:

retire1  ←  ¬Valid1  ∨  ValidResult1
retire2  ←  ¬Valid2  ∨  ValidResult2 ∧ retire1 (1)

The condition that the PC be updated by 0 instructions during
the single step of the implementation processor is:

equalPC, 0 ←  (PCImpl  =  PCSpec, 0)

Similarly, the condition that the PC be updated by 1 instruction:

equalPC, 1 ←  (PCImpl  =  PCSpec, 1)

and, by 2 instructions:

equalPC, 2 ←  (PCImpl  =  PCSpec, 2)

We can form the same conditions for the Register File:

equalRegFile, 0  ←  (RegFileImpl  =  RegFileSpec, 0)
equalRegFile, 1  ←  (RegFileImpl  =  RegFileSpec, 1)
equalRegFile, 2  ←  (RegFileImpl  =  RegFileSpec, 2)

Then, the EUFM correctness formula is the condition that the PC
and Register File (the user-visible state elements) be updated in
sync by 0, or 1, or 2 (the issue width) instructions:

correctness  ← equalPC, 0 ∧ equalRegFile, 0
 ∨ equalPC, 1 ∧ equalRegFile, 1
 ∨ equalPC, 2 ∧ equalRegFile, 2

6 Rewriting Rules Used
The goal of applying rewriting rules is to prove that the instruc-
4

tions initially in the ROB will produce equal sequences of
updates along both sides of the commutative diagram. Then,
these equal sequences of updates can be replaced with the same
new term variable in the EUFM correctness formula, which will
now depend only on the updates done by the newly fetched
instructions and can be evaluated by exploiting Positive Equality.

First, we notice that the instructions within the retire width of
the ROB (i.e., the first k instructions initially there) appear twice
in the sequence of updates along the implementation side of the
correctness diagram. Once, when they are retired during the sin-
gle cycle of regular operation of the implementation—that is
done under the condition that their result is ready and the instruc-
tions ahead are retired—and a second time when they are com-
pleted by the abstraction function. Also, the updates by
instructions initially in the ROB have as address a term variable
that represents the initial value of the instruction’s destination
register. (These term variables are introduced automatically by
the term-level symbolic simulator TLSim [33] that generates the
EUFM correctness formula.) Hence, two updates are done by the
same instruction if their addresses are the same term variable.

We start by rearranging the sequence of updates along the
implementation side of the diagram in order to bring the second
update of the same symbolic (term variable) address down to the
first update of that address. An update can be moved before
another one if their contexts (conditions under which the updates
are made) cannot be true simultaneously. For example, the sec-
ond update to address Dest1 in Fig. 2.a can be moved before the
first update to address Dest2, because their contexts, Valid1 ∧
¬ retire1 and Valid2 ∧ retire2, respectively, do not overlap.
Indeed, from (1), it follows that the context of the latter update is:

Valid2 ∧ retire2  =
Valid2 ∧ (¬ Valid2  ∨  ValidResult2 ∧ retire1)  =
Valid2 ∧ ValidResult2 ∧ retire1

which cannot be true when the context of the former update is
true, since both expressions are conjunctions that have input
retire1 in opposite polarities. Note that this form of the two con-
texts is a consequence of the in-order retirement.



We can similarly rearrange the updates when the processor
can retire k instructions per clock cycle, for k > 2. Then, the con-
text of the first update by instruction i, for 1 ≤ i ≤ k, can be rewrit-
ten to the form:

Validi ∧ ValidResulti ∧  retire1  ∧ ... ∧   retirei-1

while the second update by some instruction j that is ahead of i
in program order (i.e., 1 ≤ j < i) will be Validj ∧ ¬ retirej, so that
the two contexts are conjunctions having input retirej in opposite
polarities. This form of the contexts can be checked automati-
cally, by examining the structure of their expressions. Hence, we
can move the second update next to the first one for the same
destination address of an instruction in the retire width.

Next, we notice that the contexts of the two updates to
address Desti of instruction i in the retire width (1 ≤ i ≤ k) are
Validi ∧ retirei and Validi ∧ ¬ retirei, respectively. Therefore,
Desti will be updated if Validi ∧ retirei  ∨  Validi ∧ ¬ retirei  =
Validi  is true, which is exactly the context for the update to Desti
along the specification side of the diagram. The above form of
the contexts can be checked mechanically.

For instructions i that are initially in the ROB, but not within
the retire width (k < i ≤ N)—they have only one update to their
destination register along the implementation side of the dia-
gram—the updates along both sides of the diagram are done
under context Validi. We can automatically check that their con-
texts are the same Boolean variable.

Finally, we have to prove that the data values written to the
same symbolic (term variable) address along both sides of the
diagram are equal. This is done by case-splitting on the          Vali-
dResult bit for each instruction. The initial state of that bit is a
Boolean variable, ValidResulti, that can be identified automati-
cally, by analyzing the structure of the data expression written to
the instruction’s destination address along the specification side
of the diagram. There, ValidResulti controls an ITE expression
and, if true, selects a term variable, Resulti, that represents the
initial state of the Result field for that instruction. Else, when
ValidResulti is false, the ITE will select an UF application that
abstracts the ALU and computes the result, using data read from
the previous Register File state. Hence, the two cases are:

1.) If ValidResulti is true, then the data values written along
both sides of the diagram should evaluate to Resulti. Checking
this can be done by automatically inspecting the structure of the
ITE expressions for the data value written along the implementa-
tion side of the diagram.

2.) If ValidResulti is false, then the data value along the spec-
ification side evaluates to an UF application (abstracting the
ALU) whose data operands are read from the previous Register
File state. We need to prove the same for the data values along
the implementation side. Two subcases need to be considered:

2.1) The computation is executed during the single cycle of
regular operation of the implementation processor. The condition
for that can be detected as a formula controlling an ITE expres-
sion that is part of the data expression for the update along the
implementation side. That formula is the conjunction of Validi,
¬ValidResulti (these two Boolean variables can be identified
from the corresponding update along the specification side of the
diagram), and an expression for the condition that the data
dependencies of the instruction can be satisfied from the initial
state of the implementation processor—by being either for-
warded from the Result fields of preceding instructions in the
ROB, or read from the Register File. We will call that expression
dependencies_OK, and can use it to prove that, when it is true,
the read operations done from the specification side for the cor-
responding update there will evaluate to the same value as along
the implementation side. Namely, that they will both evaluate to
the same term variable that abstracts the initial state of some
5

Result field in the ROB, or to the same read operation from the
initial Register File state.

2.2) The computation is executed when applying the abstrac-
tion function. Then, along both sides of the diagram, the data
operands are read from the Register File state after the previous
update. However, note that if the contexts of two adjacent
updates do not overlap, i.e., we can swap the two without affect-
ing the final Register File state, then we can also move the reads,
done from the (original) previous Register File state for each of
the updates, to be performed from the new previous Register File
state for the corresponding update after the swap. We can do that
because the data values produced by those reads will be used in
the expression for the update only when its context is true. Since
that context does not overlap with the context of the other update
in the swap, then the other update will not affect the reads. 

In the case of an instruction within the retire width, we can do
a further transformation after the second update along the imple-
mentation side is moved next to the first update. Since the con-
texts of both updates do not overlap—one is Validi ∧ retirei,
while the other is Validi ∧ ¬ retirei, for 1 ≤ i ≤ k—we can move
the second update’s reads to be performed from the Register File
state before the first update. For the instruction that is first in pro-
gram order in the ROB, i.e., has Dest1 as destination register, the
state before the first update is the initial Register File state—a
term variable. After the updates to Dest1 are proved equal along
both sides of the diagram, those updates are removed from the
expressions for the Register File, since the states resulting after
the updates will be equal. We can replace the resulting equal
Register File states with a new (temporary) term variable.

The updates to Dest2, the destination of the second instruc-
tion in program order in the ROB, are then processed similarly,
and so on, until the list of updates in state RegFileSpec, 0 (Fig. 2.a)
becomes empty. Then, state RegFileSpec, 0 is replaced by a new
term variable, RegFile_equal_state, also used as the initial Reg-
ister File state in the simplified expression along the implementa-
tion side of the diagram—see Fig. 2.b.

The resulting simpler expressions for the Register File state,
not containing updates by instructions initially in the ROB, are
processed as part of the correctness formula (Sect. 5) by exploit-
ing Positive Equality.

7 Results
The experiments were performed on a 336-MHz Sun4 with 4 GB
of physical memory. Both user-visible state elements—PC and
Register File—were considered when generating the EUFM cor-
rectness formula. The abstraction function was computed by
completion functions [13][14]—see Sect. 4. There was no need
to impose constraints for the initial state of the implementation
processor, since its logic for resolving data hazards is fully
instantiated and does not depend on the previous behavior of the
design. Data operands are either read from the Register File, or
forwarded from the initial state of the ROB.

Table 1 shows the CPU times required by the term-level sym-
bolic simulator TLSim [33] to produce the EUFM correctness
formulas for implementations with different ROB sizes and
issue/retire widths. The same specification was used in all cases.
The implementation processors were generated by a C program,
taking as parameters the size of the ROB and the issue width. It
was assumed that the issue and retire widths are equal (the pre-
sented method does not depend on this) and do not exceed the
ROB size. The descriptions of processors with 1,500 ROB
entries required more than 900 MB of disk space each. In
Tables 1–4, a dash means that the configuration is impossible,
since the issue/retire width cannot exceed the ROB size.

In order to efficiently simulate implementation processors
with many ROB entries, it was necessary to optimize TLSim. Its
event-driven symbolic simulation engine was modified to sym-



bolically evaluate only the cone of influence of latches or memo-
ries whose state is updated in the current time step. This
dramatically reduced the number of events that have to be pro-
cessed, since only one computation slice of the processor is
active at a time when applying the abstraction function.

7.1 Using Only Positive Equality
The EUFM correctness formulas were first translated to equiva-
lent Boolean formulas by exploiting only Positive Equality, but
no rewriting rules. The translation was done with the tool EVC
[33]. Designs with less than 16 ROB entries required up to 3 sec-
onds for the translations; designs with 16 ROB entries required
up to 21 seconds. Then, the SAT-checker Chaff [22][34] was
used to evaluate the Boolean formulas for being unsatisfiable—
the case for correct designs—and the scaling is shown in Table 2.
Statistics for the CNF formulas for correctness of processors with
8 ROB entries are presented in Table 3. Primary inputs are the
variables in the Boolean correctness formula before it is trans-
lated to CNF format—see [32] for details about that translation.
The eij variables encode equality comparisons of register identifi-
ers. The category “Other Primary Inputs” of the correctness for-
mula includes variables encoding control bits in the initial state
of the ROB—signals Valid and ValidResult for each entry—as
well as the Valid bits of newly fetched instructions. Additionally,
that category includes Boolean variables abstracting the control
signals that determine whether to complete the execution of each
instruction whose data operands are ready, and whether to fetch
each new instruction, up to the issue width. Row “CPU Time” in
Table 3 is the same as the row for Reorder Buffer Size 8 in Table
2.

As Table 2 shows, doubling the Reorder Buffer from 4 to 8
entries increases the CPU time for SAT-checking the CNF for-
mulas by 3 orders of magnitude. If the Reorder Buffer is further
doubled to 16 entries, the verification runs out of memory (i.e.,
requires more than 4 GB) after more than 18,000 seconds, for all
issue/retire widths. Hence, the method does not scale for models
with 16 or more ROB entries, if only Positive Equality is used.

Reorder 
Buffer 

Size

Issue/Retire Width

1 2 4 8 16 32 64 128

1 0.02 ––– ––– ––– ––– ––– ––– –––

2 0.04 0.04 ––– ––– ––– ––– ––– –––

4 0.05 0.05 0.05 ––– ––– ––– ––– –––

8 0.09 0.09 0.10 0.11 ––– ––– ––– –––

16 0.20 0.20 0.20 0.24 0.28 ––– ––– –––

32 0.62 0.66 0.66 0.68 0.73 0.85 ––– –––

64 2.39 2.41 2.42 2.49 2.50 2.63 3.11 –––

128 11 11 11 11 11 11 12 14

256 62 62 62 62 62 62 63 64

512 361 364 366 367 369 369 369 375

1,024 2,391 2,392 2,394 2,399 2,413 2,421 2,426 2,446

1,250 4,118 4,122 4,127 4,129 4,132 4139 4,147 4,163

1,500 6,821 6,829 6,837 6,845 6,862 6,867 6,872 6,897

Table 1: CPU time in seconds for symbolically simulating the
out-of-order implementation and the specification, when
generating the EUFM correctness formula.
6

7.2 Using Both Rewriting Rules and Positive Equality

Then, the EUFM correctness formulas were translated to equiva-
lent Boolean formulas by exploiting both rewriting rules and
Positive Equality. Table 4 shows the CPU times for that transla-
tion. A large portion of the CPU times was spent reading the
EUFM correctness formulas from disk and building the neces-
sary data structures. For example, in the case of the processor
with 1,500 ROB entries and issue/retire width of 128, that took
3,347 seconds out of the total 5,485 seconds. Since the correct
execution of instructions initially in the ROB is proved by rewrit-
ing rules, the Boolean correctness formulas depend only on the
newly fetched instructions.

Statistics for the CNF representations of the Boolean correct-
ness formulas are shown in Table 5. Those formulas do not con-
tain eij variables, since the newly fetched instructions are
executed strictly in program order—either when flushing the
implementation processor along the implementation side of the
commutative diagram by using completion functions, or when
exercising the non-pipelined specification along the specification
side of the diagram. That makes it possible to abstract the special
uninterpreted functions read and write, used for modeling memo-
ries and satisfying the forwarding property of the memory
semantics, with completely general uninterpreted functions,
which do not satisfy that property [31]. That abstraction is done
automatically in the tool EVC. By not considering the forwarding

Reorder 
Buffer 

Size

Issue/Retire Width

1 2 4 8 16 32 64 128

1 0.03 ––– ––– ––– ––– ––– ––– –––

2 0.03 0.05 ––– ––– ––– ––– ––– –––

4 0.55 3 5 ––– ––– ––– ––– –––

8 3,222 3,034 12,819 38,705 ––– ––– ––– –––

16 >18,000  (Out of Memory:  >4 GB) ––– ––– –––

Table 2: CPU time in seconds for checking the unsatisfiability
of the CNF formula, i.e., the correctness of the
implementation processor, when only Positive Equality was
used. The SAT-checker Chaff [22][34] was employed.

Reorder 
Buffer 
Size = 8

Issue/Retire Width

1 2 4 8 16 32 64 128

eij 
Primary
Inputs

108 142 213 428 ––– ––– ––– –––

Other
Primary
Inputs

26 28 32 40 ––– ––– ––– ––

Total
Primary
Inputs

134 170 245 468 ––– ––– ––– –––

CNF
Variables 822 1,041 1,533 2,794 ––– ––– ––– –––

CNF 
Clauses 5,685 7,804 13,430 33,704 ––– ––– ––– –––

CPU 
Time [s] 3,222 3,034 12,819 38,705 ––– ––– ––– –––

Table 3: Statistics for the CNF formulas for correctness of
models with 8 Reorder Buffer entries, when only Positive
Equality was used. The SAT-checker Chaff [22][34] was
employed, and its CPU time is reported.



property, we employ a more conservative memory model. The
category “Other Primary Inputs” in Table 5 includes Boolean
variables that encode the Valid bits of newly fetched instructions,
or abstract the control signals that determine whether to fetch
each new instruction. The formulas do not depend on Boolean
variables that represent the initial state of control bits in the
ROB, or determine whether to complete the execution of ready
instructions, as those variables are eliminated by the rewriting
rules.

The total time to formally verify an out-of-order processor,

Reorder 
Buffer 

Size

Issue/Retire Width

1 2 4 8 16 32 64 128

1 0.08 ––– ––– ––– ––– ––– ––– –––

2 0.11 0.11 ––– ––– ––– ––– ––– –––

4 0.11 0.12 0.15 ––– ––– ––– ––– –––

8 0.13 0.14 0.16 0.31 ––– ––– ––– –––

16 0.24 0.26 0.27 0.41 1.12 ––– ––– –––

32 0.65 0.65 0.69 0.82 1.55 7.10 ––– –––

64 2.40 2.40 2.40 2.52 3.23 8.72 64 –––

128 10 10 10 10 11 16 71 745

256 47 47 47 48 48 54 110 794

512 266 267 269 270 271 279 338 1,065

1,024 1,760 1,760 1,760 1,761 1,762 1,778 1,830 2,716

1,250 2,598 2,598 2,599 2,600 2,601 2,603 2,672 3,709

1,500 4,465 4,467 4,472 4,473 4,478 4,482 4,592 5,485

Table 4: CPU time in seconds for translating the EUFM
correctness formula to an equivalent Boolean formula, when
both rewriting rules and Positive Equality were used.

Any 
Reorder 
Buffer 

Size

Issue/Retire Width

1 2 4 8 16 32 64 128

eij 
Primary
Inputs

0 0 0 0 0 0 0 0

Other
Primary
Inputs

2 4 8 16 32 64 128 256

Total
Primary
Inputs

2 4 8 16 32 64 128 256

CNF
Variables 10 21 51 135 399 1,311 4,671 17,535

CNF 
Clauses 24 65 250 1,204 7,016 46,800 339,360 ~2.6M

CPU 
Time [s] 0.02 0.02 0.02 0.04 0.18 1.35 14 171

Table 5: Statistics for the CNF formulas for correctness of
models with any Reorder Buffer size, when both rewriting
rules and Positive Equality were used. The results do not
depend on the size of the Reorder Buffer, since the
instructions initially there were processed by rewriting rules.
The SAT-checker Chaff [22][34] was employed, and its CPU
time is reported.
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when using rewriting rules, includes the time for symbolic simu-
lation to generate the EUFM correctness formula (Table 1), the
time for EUFM to CNF translation (Table 4), and the time to
prove that the CNF formula is unsatisfiable (Table 5). For a pro-
cessor with 1,500 ROB entries and issue/retire width of 128, the
total time was 12,553 seconds, or 3:29 hours. The CNF formula
for that design had almost 2.6 million clauses (Table 5), and was
proved to be unsatisfiable in 171 seconds by the SAT-checker
Chaff.

When no rewriting rules were used, the processor with
8 ROB entries and issue/retire width of 8 was formally verified
after 38,708 seconds—3 seconds to translate the EUFM correct-
ness formula to a CNF formula, and 38,705 seconds to prove that
the CNF formula was unsatisfiable (Table 2). Rewriting rules
reduced the total time to 0.35 seconds—0.31 seconds for the
EUFM to CNF translation (Table 4), and 0.04 for SAT-checking
(Table 5). In both cases, the CPU time to generate the EUFM cor-
rectness formula was 0.31 seconds (Table 1). Hence, rewriting
rules result in 5 orders of magnitude speedup—reducing the CPU
time from 38,708 seconds to 0.35 seconds—when solving the
correctness formula for that processor.

Rewriting rules were also used when verifying a buggy vari-
ant of the processor with 128 ROB entries and issue/retire width
of 4. The bug was in the forwarding logic for one of the data
operands of the 72nd instruction in the ROB. The rewriting rules
took 9 seconds to identify the 72nd computation slice as not con-
forming to the expected expression structure. (The correct design
was verified in 10 seconds, when rewriting rules were employed
—see Table 4.) In contrast, when only Positive Equality was
used, EVC [33] ran out of memory after 6,100 seconds during the
EUFM to CNF translation. Although it remains to be proved that
the bug identified by the rewriting rules is not a false negative
(that would be addressed in future work), the speedup in detect-
ing the (potential) buggy computation slice is dramatic. Also,
when the correct version of the processor was verified by using
only Positive Equality, the EUFM to CNF translation similarly
ran out of memory after more that 6,000 seconds. Hence, without
rewriting rules, it would have been impossible to formally verify
most of the benchmarks.

The manual definition of the rewriting rules took 3 days.

8 Comparison with Related Work
All previous methods for formal verification of out-of-order pro-
cessors [1][2][3][11][13][14][15][16][17][18][21][23][24] are
based entirely on theorem-proving, and require extensive manual
work. For example, Hosabettu, et al. [13] report 19 person days
for verification of an out-of-order processor with a Reorder
Buffer and register-register instructions. In contrast, the method
presented in this paper required 3 days of manual work for the
definition of the rewriting rules, and is otherwise automatic.
Also, the user does not have to define an induction hypothesis, as
the entries in the Reorder Buffer are fully instantiated. So is the
logic for resolving data hazards—in the verified processors, that
is done by stalling the execution of instructions until their data
operands can be either read from the Register File or forwarded
from preceding entries in the Reorder Buffer. Hence, the abstract
processors verified in the current paper are closer to actual imple-
mentations, compared to the abstract models in previous work.
For example, McMillan and Jhala [15][21], who consider only
1 or 2 instructions in the Reorder Buffer, will need to prove the
correctness of the complete logic for resolving data hazards,
when the properties they proved are refined to an actual imple-
mentation.

Additionally, all previous research has examined models that
can issue and retire only a single instruction per clock cycle. In
contrast, the processors verified in this paper can issue and retire
up to 128 instructions per clock cycle. Verifying such designs is
possible due to: 1) the use of rewriting rules for processing the



instructions within the retire width, and 2) the use of Positive
Equality for proving the correct execution of newly fetched
instructions within the issue width.

9 Conclusions and Future Work
Rewriting rules and Positive Equality were combined to formally
verify abstract out-of-order processors that implement register-
register instructions, have a Reorder Buffer with up to 1,500
instructions, and can issue/retire up to 128 instructions per clock
cycle. Scaling to larger configurations was limited by the avail-
able 4 GB of physical memory. However, the above numbers are
more than 10 times greater than those in current state-of-the-art
processors [7][9][12]. The identical structure of the computation
slices, abstracting the execution of instructions initially in the
Reorder Buffer, makes it easy to define rewriting rules to prove
that each instruction initially in the processor produces equal
updates along both sides of the commutative diagram. Then, the
equal updates are removed, and the simplified correctness for-
mula, which depends only on the updates done by the newly
fetched instructions, is processed by exploiting Positive Equality.
Rewriting rules resulted in up to 5 orders of magnitude speedup,
compared to using Positive Equality alone. Indeed, without
rewriting rules, it would have been impossible to formally verify
most of the benchmarks.

Future work will focus on verifying out-of-order processors
based on register renaming, as well as processors that support
more instruction types, and implement exceptions and branch
prediction. Also, it will be useful to give the user flexibility in
defining rewriting rules. Another direction will be to automate
the synthesis of an implementation with a specific structural con-
figuration of functional units, data buses, etc., starting from a for-
mally verified abstract model. Finally, the presented method has
potential for exploiting parallelism—the rewriting rules can be
applied simultaneously to each of the instructions initially in the
Reorder Buffer.
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