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Automatic Abstraction of Equations in a Logic of Equality

Abstract. The paper presents a method to automatically abstract equations when
translating formulas with equality to equivalent Boolean formulas, allowing the use
of a SAT-checker to determine the validity of the original formula. The equations are
abstracted with a special interpreted predicate that satisfies the properties of symme-
try, reflexivity, transitivity, and functional consistency. This abstraction is both sound
and complete. In contrast to previous methods that encode only low-level equations
between term variables, the presented abstraction directly encodes top-level equa-
tions where the arguments can be nested-ITE expressions that select term variables.
The automatic abstraction was used to formally verifying the safety of pipelined,
superscalar, and VLIW processors, and reduced the CNF clauses by up to 50%, while
speeding up the formal verification by up to an order of magnitude relative to the eij
method where a new Boolean variable is used to encode each unique low-level equa-
tion between term variables. A heuristic for partial transitivity resulted in additional
speedup for correct benchmarks that require transitivity.

1  Introduction

In formal verification of microprocessors, equations (equality comparisons) are used:
1) in the control logic, to express forwarding and stalling conditions, based on equality
between a source and a destination register; 2) in mechanisms for correcting wrong
speculations, when a predicted data value is not equal to the actual one; and 3) in the
correctness formula, to compare the final architectural states of the implementation
and the specification. The logic of Equality with Uninterpreted Functions and Memo-
ries (EUFM) [7] allows us to abstract functional units and memories, while completely
modeling the control path of a processor. In EUFM, word-level values are abstracted
with expressions called terms (see Sect. 2), whose only property is that of equality
with other terms. In our previous work on using EUFM to formally verify pipelined,
superscalar, and VLIW microprocessors [21][23], we imposed some simple restric-
tions on the style for defining high-level processors. The result was a significant reduc-
tion in the number of terms that appear in both positive and negated equations—and
are so called g-terms (for general terms)—while increasing the number of terms that
appear only in positive (not negated) equations—and are so called p-terms (for posi-
tive terms). We will refer to equations that appear in both positive and negated polarity
as g-equations, and to those that appear only in positive polarity as p-equations. The
property of Positive Equality [21] allowed us to treat syntactically different p-terms as
not equal when checking the validity of an EUFM formula, thus achieving significant
simplifications, and orders of magnitude speedup—see [5] for a correctness proof.

In the current paper, the implementation and specification are described in the high-
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level hardware description language AbsHDL [25][27], based on the logic of EUFM.
The formal verification is done with an automatic tool flow, consisting of: 1) the term-
level symbolic simulator TLSim [25], used to symbolically simulate the implementa-
tion and specification, and to produce an EUFM correctness formula; 2) the decision
procedure EVC [25] that exploits Positive Equality and other optimizations to translate
the EUFM correctness formula to an equivalent Boolean formula, which has to be a
tautology for the implementation to be correct; and 3) an efficient SAT-checker. This
tool flow was used at Motorola [13] to formally verify a model of the M•CORE pro-
cessor, and detected bugs. The tool flow was also used in an advanced computer archi-
tecture course [27][28], where undergraduate and graduate students designed and
formally verified pipelined DLX [10] processors, including variants with exceptions
and branch prediction, as well as dual-issue superscalar implementations.

While SAT-checkers are very quick to find a counterexample for a bug [26], they
can be orders of magnitude slower when proving unsatisfiability of CNF formulas
from correct designs. This paper proposes an approach to speed up the formal verifica-
tion of correct models by abstracting the g-equations in a sound and complete way that
results in a conceptually simpler solution space, fewer CNF clauses, and up to an order
of magnitude reduction in the SAT-checking decisions and conflicts, relative to previ-
ous methods for encoding g-equations with Boolean variables [9][16].

2  Background

The formal verification is done by correspondence checking—comparison of a pipe-
lined implementation against a non-pipelined specification, using flushing [7][8] to
automatically compute an abstraction function that maps an implementation state to an
equivalent specification state. The safety property (see Figure 1) is expressed as a for-
mula in the logic of EUFM, and checks that one step of the implementation corre-
sponds to between 0 and k steps of the specification, where k is the issue width of the
implementation. FImpl is the transition function of the implementation, and FSpec is the
transition function of the specification. We will refer to the sequence of first applying
the abstraction function and then exercising the specification as the specification side
of the commutative diagram in Figure 1, and to the sequence of first exercising the
implementation for one step and then applying the abstraction function as the imple-
mentation side of the commutative diagram.

The safety property is a proof by induction, since the initial implementation state,
QImpl, is completely arbitrary. If the implementation is correct for all transitions that
can be made for one step from an arbitrary initial state, then the implementation will be
correct for one step from the next implementation state, Q′Impl, since that state will be
a special case of an arbitrary state as used for the initial state, and so on for any number
of steps. For some processors, e.g., where the control logic is optimized by using
unreachable states as don’t-care conditions, we may have to impose a set of invariant
constraints for the initial implementation state in order to exclude unreachable states.
Then, we need to prove that those constraints will be satisfied in the implementation
state after one step, Q′Impl, so that the correctness will hold by induction for that state,
and so on for all subsequent states. See [1][2] for a discussion of correctness criteria.
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Fig. 1.  The safety correctness property for an implementation with issue width k: one step of the
implementation should correspond to between 0 and k steps of the specification, when the imple-
mentation starts from arbitrary initial state QImpl that may be restricted by invariant constraints

To illustrate the safety property in Figure 1, let the implementation and specification
have three architectural state elements—program counter (PC), register file, and data
memory. Let PCi

Spec, RegFilei
Spec, and DMemi

Spec be the state of the PC, register file,
and data memory, respectively, in specification state Qi

Spec (i = 0, ..., k) along the spec-
ification side. Let PC*

Spec, RegFile*
Spec, and DMem*

Spec be the state of the PC, regis-
ter file, and data memory in specification state Q*

Spec, reached after the implementation
side of the diagram. Then, each disjunct equalityi (i = 0, ..., k) is defined as: 

equalityi  ←  pci ∧  rfi ∧  dmi,

where 

pci  ←  (PCi
Spec = PC*

Spec), 
rfi  ←  (RegFilei

Spec = RegFile*
Spec), 

dmi  ←  (DMemi
Spec = DMem*

Spec).

That is, equalityi is the conjunction of the pair-wise equality comparisons for all archi-
tectural state elements, thus ensuring that the architectural state elements are updated
in synchrony by the same number of instructions. In processors with more architec-
tural state elements, an equality comparison is conjuncted similarly for each additional
state element. Hence, for this implementation, the safety property is:

pc0 ∧  rf0 ∧  dm0   ∨   pc1 ∧  rf1 ∧  dm1   ∨  . . .  ∨   pck ∧  rfk ∧  dmk   =   true. (1)

The syntax of EUFM [7] includes terms and formulas. Terms are used to abstract
word-level values of data, register identifiers, memory addresses, as well as the entire
states of memory arrays. A term can be an Uninterpreted Function (UF) applied to a
list of argument terms, a term variable, or an ITE operator selecting between two argu-
ment terms based on a controlling formula, such that ITE(formula, term1, term2) will
evaluate to term1 if formula = true, and to term2 if formula = false. The syntax for

FImpl

FSpec

Abs

QImpl

Abs

Q′Impl

Q∗
Spec

equalityk

Q0
Spec

equality1

=

equality0  ∨  equality1  ∨  . . . ∨  equalityk   =   true 

Safety property:

FSpec FSpec

equality2

.  .  .

k steps

1 step

equality0

=

= =

Q1
Spec Q2

Spec Qk
Spec

.  .  .
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terms can be extended to model memories by means of the interpreted functions read
and write [7][24]. Formulas are used to model the control path of a processor, as well
as to express the correctness condition. A formula can be an Uninterpreted Predicate
(UP) applied to a list of argument terms, a propositional variable, an ITE operator
selecting between two argument formulas based on a controlling formula, or an equa-
tion between two terms. Formulas can be negated and combined with Boolean connec-
tives. We will refer to both terms and formulas as expressions.

UFs and UPs are used to abstract functional units by replacing them with “black
boxes” that satisfy no particular properties other than that of functional consistency—
that the same combinations of values to the inputs of the UF (or UP) produce the same
output value. Then, it no longer matters whether the original functional unit is an
adder, or a multiplier, etc., as long as the same UF (or UP) is used to replace it in both
the implementation and the specification. Thus, we will prove a more general prob-
lem—that the processor is correct for any functionally consistent implementation of its
functional units. However, this more general problem is easier to prove.

Two possible ways to impose the property of functional consistency of UFs and UPs
are Ackermann constraints [3], and nested ITEs [21]. The Ackermann scheme replaces
each UF (UP) application in the EUFM formula F with a new term variable (Boolean
variable) and then adds external consistency constraints. For example, the UF applica-
tion f(a1, b1) will be replaced by a new term variable c1, another application of the
same UF, f(a2, b2), will be replaced by a new term variable c2. Then, the resulting
EUFM formula F ′ will be extended as   [(a1 = a2) ∧  (b1 = b2)  ⇒ (c1 = c2)]  ⇒  F ′. In
the nested-ITE scheme, the first application of the above UF is still replaced by a new
term variable c1. However, the second is replaced by ITE((a2 = a1) ∧  (b2 = b1), c1, c2),
where c2 is a new term variable. A third one, f(a3, b3), is replaced by ITE((a3 = a1) ∧
(b3 = b1), c1, ITE((a3 = a2) ∧  (b3 = b2), c2, c3)), where c3 is a new term variable, and so
on. UPs are eliminated similarly, but with new Boolean variables.

To compare the sequence of write operations that form the final states of memories
after the implementation and specification sides of the diagram, the decision procedure
EVC [25] automatically introduces a new term variable to serve as comparison
address for each memory. Let cmp_addr be the new term variable introduced for the
register file. Then, each equation (RegFilei

Spec = RegFile*
Spec), is replaced with

(read(RegFilei
Spec, cmp_addr)  =  read(RegFile*

Spec, cmp_addr)), thus checking
whether an arbitrary address in the register file is modified in the same way by both
sides of the diagram. EVC replaces a read from a sequence of writes with a sequence
of nested ITEs, according to the forwarding property of the memory semantics, such
that each ITE is controlled by an equation between the new term variable and the desti-
nation address of the eliminated write. These equations appear in dual polarity—posi-
tive when selecting the then-expression of the ITE, and negative when selecting the
else-expression—i.e., are g-equations that need to be encoded with Boolean variables.

We will call complete equality the usual equality, where two (syntactically) different
term variables a and b can be either equal or not equal to each other, and will use = to
denote it. Reasoning about complete equality requires a case split, in order to account
for both cases, and so the need to encode it with Boolean variables when translating an
EUFM formula to an equivalent Boolean formula. We will call syntactic equality the
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subset of complete equality where a term variable is equal only to itself, and will use
=SYN to denote it. We will call delta equality the difference between complete equality
and syntactic equality, and will use =∆ to denote it. That is, if t1 and t2 are two terms
consisting of ITE operators, term variables, and formulas controlling the ITE opera-
tors, then (t1 =∆ t2) is defined as (t1 = t2) ∧  ¬ (t1 =SYN t2), or equivalently, complete
equality (t1 = t2) is defined as (t1 =SYN t2) ∨  (t1 =∆ t2). We will call hybrid equality the
extension of syntactic equality with a proper subset of the delta equality between two
terms, and will denote it with =HYB.

The property of Positive Equality is due to the observation that the correctness for-
mula (1) consist of top-level p-equations that are combined with the monotonically
positive connectives of conjunction and disjunction, but are not negated. Then, if the
formula is valid (true) when the complete equality in the top-level p-equations is
replaced with syntactic equality, the formula will also be valid with the original com-
plete equality in those equations, since then the formula can only get bigger due to the
omitted delta equality that will be added through monotonically positive connectives.
However, the benefit from using only syntactic equality for the top-level p-equations is
the significant reduction of the solution space, resulting in orders of magnitude
speedup. Similarly, we exploit syntactic functional consistency when eliminating UFs
and UPs in that the property of functional consistency is enforced only for the cases of
syntactic equality between corresponding arguments in applications of the same UF/
UP, unless both arguments are g-terms. Syntactic functional consistency is a conserva-
tive approximation, since functional consistency is enforced only for a subset of the
conditions for complete functional consistency (based on complete equality). If F is a
formula obtained after eliminating all UFs/UPs by accounting for only syntactic func-
tional consistency, and F is valid, then so will be the formula obtained from F by
accounting for complete functional consistency, e.g., by extending F with Ackermann
constraints for complete functional consistency. However, g-equations could be either
true or false, and need to be encoded with Boolean variables [9][16].

A low-level g-equation is one where both arguments are term variables. A top-level
g-equation is one where the arguments can be either term variables or nested-ITE
expressions selecting term variables. Previous methods for encoding g-equations with
Boolean variables [9][16] eliminate top-level g-equations by pushing them to the argu-
ment term variables, and then encode the resulting low-level g-equations. The eij
encoding [9] replaces each unique low-level equation between different term variables
vi and vj with a new Boolean variable, called eij. The property of symmetry of equality
is accounted for by sorting vi and vj according to their indices, e.g., so that i < j, before
introducing a Boolean variable; and the property of transitivity of equality—if vi = vj
and vj = vk then vi = vk—is enforced with transitivity constraints of the form eij ∧  ejk
⇒  eik. In the small-domain encoding [16], each g-term variable is assigned a set of
constants that it can take on in a way that allows it to be either equal to or different
from any other g-term variable that it can be transitively compared for equality with. If
a g-term variable is assigned a set of N constants, then those can be indexed with
log2(N)  Boolean variables. Two g-term variables are equal if their indexing Boolean
variables select simultaneously a common constant. The property of transitivity is
automatically enforced in this encoding. Depending on the structure of the g-term
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equality-comparison graphs, the small-domain encoding may introduce fewer Boolean
variables than the eij encoding. That could mean a smaller search space. However, now
a low-level g-equation is replaced with a Boolean formula—enumerating all cases
when the argument g-term variables evaluate to a common constant—instead of a sin-
gle Boolean variable. In our previous work [26], we found the eij encoding to outper-
form the small-domain encoding when formally verifying microprocessors. For other
benchmarks, Seshia et al. [18] proposed a hybrid encoding, such that the eij and small-
domain encodings are each used on a different connected component of low-level g-
equations in the same correctness formula. The decision procedure EVC adds all tran-
sitivity constraints for the eij variables to the CNF correctness formula, while the deci-
sion procedure CVC [4] iteratively analyzes counterexamples, and includes transitivity
constraints incrementally—just as many as to prevent the recurrence of a counterex-
ample. However, Seshia et al. [18] found the incremental approach to result in signifi-
cant overhead when checking validity of complex formulas.

3  Automatic Abstraction of Equations

In this section, we will assume that the interpreted functions read and write, as well as
all UFs and UPs, have been eliminated from the EUFM correctness formula. That is,
each term in the formula is either a term variable, or a nested-ITE expression selecting
term variables. In this formula, instead of encoding low-level g-equations, we can
automatically abstract the top-level g-equations with the special interpreted predicate
abs_equality that satisfies the properties of transitivity, syntactic functional consis-
tency, syntactic symmetry, and (syntactic) reflexivity. Note that the abstracted com-
plete equality is: 1) transitive—if a = b and b = c then a = c;  2) symmetric—if a = b
then b = a;  3) reflexive, i.e., a = a is true; and 4) functionally consistent—given two
equations a = b and c = d, the equality between arguments in the same positions, i.e., a
= c and b = d, implies that the two equations have equal values, as follows from the
property of transitivity, since the four equations form a cycle, and if three of them are
true then the fourth should also be true, while if one is false and two are true then the
fourth should be false or otherwise there will be a cycle of three equations that are true,
implying that the first should be true and so contradicting its value. Also note that the
property of reflexivity is equivalent to syntactic equality, since the property holds
when exactly the same term variable appears on both sides of an equation. 

We can extend either the nested-ITE or the Ackermann-constraint scheme for elimi-
nation of uninterpreted predicates in order to eliminate applications of abs_equality by
accounting for its properties of syntactic functional consistency, syntactic symmetry,
and reflexivity. Transitivity can be imposed as in the case of low-level g-equations
[26]—by triangulating the equality-comparison graph (where each vertex is a term
used in a top-level g-equation, and each edge corresponds to a g-equation between two
terms) with extra edges, added in a greedy manner to turn every two edges with a com-
mon vertex into a triangle (cycle of length 3), and then imposing three transitivity con-
straints for the CNF variables representing the values of g-equations in a triangle.

In order to adopt the nested-ITE scheme, each ITE-controlling formula is extended
to account for syntactic symmetry, while the top ITE expression is disjuncted with the
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condition for syntactic equality between the two arguments, thus ensuring reflexivity.
That is, the first application of abs_equality(t1, t2), where t1 and t2 are terms, is elimi-
nated with (t1 =SYN t2)  ∨   E1, where E1 is a new Boolean variable, and the disjunction
of (t1 =SYN t2) ensures reflexivity. A second application abs_equality(t3, t4) is elimi-
nated with (t3 =SYN t4)  ∨   ITE((t3 =SYN t1) ∧  (t4 =SYN t2)  ∨   (t4 =SYN t1) ∧  (t3 =SYN t2),
E1,  E2), where E2 is a new Boolean variable, and the disjunction of (t3 =SYN t4) ensures
reflexivity. In the controlling formula, the expression (t3 =SYN t1) ∧  (t4 =SYN t2) ensures
syntactic functional consistency, as in the original nested-ITE scheme for elimination
of UFs and UPs, and the disjunction of (t4 =SYN t1) ∧  (t3 =SYN t2) ensures syntactic sym-
metry. A third application abs_equality(t5, t6) is eliminated with (t5 =SYN t6)  ∨   ITE((t5
=SYN t1) ∧  (t6 =SYN t2)  ∨   (t6 =SYN t1) ∧  (t5 =SYN t2),   E1,  ITE((t5 =SYN t3) ∧  (t6 =SYN t4)
∨   (t6 =SYN t3) ∧  (t5 =SYN t4),   E2,   E3)),  where E3 is a new Boolean variable.

The Ackermann-constraint scheme can be customized similarly. Each of the three
applications, abs_equality(t1, t2), abs_equality(t3, t4), and abs_equality(t5, t6), will be
eliminated with a new Boolean variable—E1, E2, and E3, respectively. Let F ′ be the
resulting EUFM formula. To account for the properties of reflexivity, syntactic sym-
metry, and syntactic functional consistency of abs_equality, we define separate con-
straints, conjunct them in formula constraints, and use it to restrict F ′, i.e., prove the
validity of constraints ⇒ F ′. In particular, to enforce reflexivity of the first, second,
and third applications of abs_equality, we use the constraints (t1 =SYN t2)  ⇒  E1,
(t3 =SYN t4) ⇒ E2, and (t5 =SYN t6)  ⇒ E3, respectively. To account for syntactic func-
tional consistency and syntactic symmetry of the second application with respect to the
first, we use [(t3 =SYN t1) ∧  (t4 =SYN t2)  ∨   (t4 =SYN t1) ∧  (t3 =SYN t2)]  ⇒  (E1 ⇔ E2). To
account for syntactic functional consistency and syntactic symmetry of the third appli-
cation with respect to the first, we use [(t5 =SYN t1) ∧  (t6 =SYN t2)  ∨   (t6 =SYN t1) ∧  (t5
=SYN t2)]  ⇒  (E1 ⇔ E3). Finally, to account for syntactic functional consistency and
syntactic symmetry of the third application with respect to the second, we add the con-
straint [(t5 =SYN t3) ∧  (t6 =SYN t4)  ∨   (t6 =SYN t3) ∧  (t5 =SYN t4)]  ⇒  (E2 ⇔ E3).

Example: Let t1, t2, t3, t4, t5, and t6 be six terms defined as follows:

t1  ←  a t2  ←  b
t3  ←  ITE(f1, c, a) t4  ←  c
t5  ←  ITE(f2, d, a) t6  ←  ITE(f3, a, b)

where a, b, c, and d are term variables, and f1, f2, and f3 are formulas. Let (t1 = t2), (t3 =
t4), and (t5 = t6) be top-level g-equations in an EUFM formula.

To apply the eij encoding, the top-level g-equations will be pushed to their argument
term variables: the first equation will remain unchanged, (a = b), since both arguments
are term variables, and will be replaced with the new Boolean variable eab; the second
will become ITE(f1, c = c, a = c), i.e., ITE(f1, true, a = c), and will be replaced with f1
∨  eac, after a = c is encoded with the new Boolean variable eac; the third will become
ITE(f2, ITE(f3, a = d, b = d), ITE(f3, a = a, a = b)), and will be replaced with f2 ∧ f3 ∧
ead  ∨  f2 ∧ ¬ f3 ∧ ebd  ∨  ¬ f2 ∧ f3  ∨  ¬ f2 ∧ ¬ f3 ∧ eab, after a = d is encoded with ead and
b = d is encoded with ebd.

Using the special interpreted predicate abs_equality, the top-level g-equations will
be abstracted as abs_equality(t1, t2), abs_equality(t3, t4), and abs_equality(t5, t6).
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Then, using the nested-ITE scheme, the first application of abs_equality will be elimi-
nated with (a =SYN b) ∨  E1, which evaluates to E1, since a and b are two (syntactically)
different term variables, so that their syntactic equality evaluates to false. The second
application will be eliminated with (ITE(f1, c, a) =SYN c)  ∨   ITE((ITE(f1, c, a) =SYN a)
∧  (c =SYN b)  ∨   (c =SYN a) ∧  (ITE(f1, c, a) =SYN b),  E1,  E2), which evaluates to f1  ∨
ITE(¬ f1 ∧  false ∨  false ∧ false,  E1,  E2), i.e., to f1  ∨   E2, where f1 expresses the condi-
tion for syntactic equality between the two arguments, while E2 encodes the two possi-
ble values of the delta equality between the two argument terms. Eliminating the third
application of abs_equality, and simplifying the resulting expression, we get  ¬ f2 ∧  f3
∨  ITE(¬ f2 ∧  ¬ f3,  E1,  E3), where formula ¬ f2 ∧  f3 expresses the conditions for syntac-
tic equality between the two arguments, while the ITE operator will select Boolean
variable E1 if formula ¬ f2 ∧  ¬ f3 is true, i.e., in the cases of syntactic functional consis-
tency with the arguments of the first application of abs_equality, while the new Bool-
ean variable E3 encodes the delta equality between the two arguments in the cases
when the arguments do not satisfy conditions for syntactic functional consistency or
syntactic symmetry with respect to previous pairs of arguments.

Using Ackermann constraints to enforce reflexivity, syntactic functional consis-
tency, and syntactic symmetry for abs_equality, the first, second, and third applications
will be replaced with the new Boolean variables E1, E2, and E3, respectively. Then, the
resulting formula will be evaluated under the constraints: f1 ⇒ E2, enforcing reflexiv-
ity for abs_equality(t3, t4); ¬ f2 ∧  f3 ⇒ E3, enforcing reflexivity for abs_equality(t5, t6);
and ¬ f2 ∧  ¬ f3 ⇒ (E1 ⇔ E3), enforcing syntactic functional consistency between
abs_equality(t3, t4) and abs_equality(t5, t6).

THEOREM 1. Let F be an EUFM formula that contains term variables, Boolean vari-
ables, logic connectives, ITE operators, and equations. Then, abstracting the top-level
g-equations in F with the interpreted predicate abs_equality is sound and complete.

Proof: Let formula F ′ be obtained from F after abstracting the top-level g-equations
with the interpreted predicate abs_equality.

Soundness—the validity of F ′ implies the validity of F. If F ′ is valid, then so will be
any formula obtained from F ′ after replacing abs_equality with any predicate that has
two arguments, and satisfies the properties of transitivity, reflexivity, syntactic symme-
try, and syntactic functional consistency, including the original complete equality. Note
that by its definition, abs_equality satisfies the property of syntactic equality, i.e.,
reflexivity. What is missing from complete equality are two constraints: 1) if the delta
equality between terms a and b is true, then abs_equality(a, b) should be true; and 2) if
the complete equality between terms a and b is false, then abs_equality(a, b) should be
false. However, if F ′ is valid without such constraints, it will be valid with them:

[((a =∆ b) ⇒ abs_equality(a, b))  ∧   (¬ (a = b) ⇒ ¬abs_equality(a, b))]  ⇒  F ′, 

where the resulting formula is trivially valid, since F ′ is already valid.
Completeness—a counterexample in F ′ can be mapped to a counterexample in F. A

counterexample in F ′ consists of assignments to variables Ei, used when eliminating
abs_equality, and assignments to the other Boolean variables that also appear in F. The
arguments of each abstracted g-equation are either term variables or nested-ITE
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expressions that select term variables, where the ITE operators are controlled by for-
mulas that depend on applications of abs_equality and on the other Boolean variables.
Hence, each counterexample results in an assignment to the ITE-controlling formulas,
thus selecting some term variable a as the first argument of an application of
abs_equality, and another term variable b as the second argument. Then, we can assign
the value of that particular application of abs_equality to the low-level equation a = b
and can replace that application of abs_equality with the original complete equality.
The correctness formula is a Directed Acyclic Graph (DAG), so that the value of the
introduced top-level g-equation does not affect the arguments of that equation. Hence,
the ITE-controlling formulas in the arguments will keep their values, and so a and b
will still appear on the two sides of that g-equation, which will have the same value as
the replaced application of abs_equality. We can similarly map the value of each
remaining applications of abs_equality to a value of a low-level g-equation between
the term variables selected by the nested-ITE arguments, and then replace that applica-
tion of abs_equality with a top-level g-equation, which will get the same value as the
one assigned to the low-level g-equation, i.e., as the one of the eliminated application
of abs_equality. Thus, all abstractions of top-level g-equations will be undone, and we
will get the original formula F. What remains to be proved is that these assignments to
low-level g-equations will not violate the properties of equality. First, reflexivity is
always preserved, since syntactic equality between the two arguments is always
accounted for, and an application of abs_equality is forced to be true when exactly the
same term variable is selected to appear on both sides of the abstracted g-equation, i.e.,
it is impossible for the same term variable to appear as both arguments of an applica-
tion of abs_equality that evaluates to false. Second, constraints for syntactic functional
consistency ensure that if the same pair of term variables is selected as arguments of
different applications of abs_equality, then those applications will have the same
value, i.e., it is impossible for the same low-level g-equation between term variables to
get assigned contradicting values from different applications of abs_equality. Third,
because of constraints for syntactic symmetry, it is similarly impossible for two sym-
metric low-level equations, a = b and b = a, to get assigned different values. Fourth,
transitivity will never be violated, since constraints for transitivity of equality ensure
that applications of abs_equality do not violate transitivity, and, as described above, a
counterexample determines a 1-to-1 mapping of every cycle of abstracted top-level g-
equations to an isomorphic cycle of low-level g-equations, each having value identical
to that of the corresponding abstracted top-level g-equation.

Note that each counterexample maps the value of an abstracted top-level g-equation
to exactly one low-level g-equation between term variables in the support of the top-
level g-equation. The low-level g-equations that are left unassigned are don’t-care con-
ditions. They do not affect the counterexample, and can be left unassigned or given
any value that does not violate transitivity, when interpreting the counterexample.

As an optimization, we can choose not to enforce transitivity, or reflexivity, or both;
these properties are not needed for models with in-order execution, as shown in the
experiments (see Sect. 5). Alternatively, we can enforce partial transitivity—a heuris-
tic for that is presented in Sect. 4.3, and was found to speed up the formal verification
of processors with out-of-order execution and completion.
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4  Using the Automatic Abstraction

4.1 Identifying Connected Equality-Comparison Components

We will again assume that the formula contains term variables, Boolean variables,
logic connectives, ITE operators, and equations. Each equation is classified as a p-
equation or a g-equation, if it was reached under an even or odd number of negations,
respectively, before the uninterpreted functions and uninterpreted predicates were
eliminated. Syntactic equations introduced when eliminating uninterpreted functions
and uninterpreted predicates are also classified as p-equations. The arguments of g-
equations are either term variables or nested-ITE expressions selecting term variables.
For each g-equation, all term variables that can be selected to appear as an argument
are grouped into an equivalence class. Equivalence classes that have common term
variables are merged and their g-equations are marked to belong to the same connected
equality-comparison component. The properties of transitivity, functional consistency,
and symmetry need to be enforced only within a connected component, since the val-
ues of equations from a connected component have no way of affecting equations from
another connected component. That is, we can use a different version of interpreted
predicate abs_equality for each connected component.

In processors with branch prediction, the equations for the PC states, pci, in correct-
ness formula (1) will contain term variables that are arguments to g-equations intro-
duced by the mechanism for correcting branch mispredictions—if the actual and
predicted branch targets are equal, then the prediction is correct and any speculative
instructions are allowed to complete; otherwise, the speculative instructions are
squashed. To ensure that such p-equations have values that are consistent with those of
abstracted g-equations that control the speculation and have common term variables as
arguments, we need to promote p-equations to g-equations. That is, for each p-equa-
tion, determine the equivalence class of term variables that may appear as an argu-
ment; if this equivalence class has a common element with another equivalence class
that identifies a connected component of g-equations, then merge the two equivalence
classes, and promote the p-equation to a g-equation from that connected component.

4.2 Mapping Abstract Counterexamples to Concrete Ones

A counterexample for the abstract model, where top-level g-equations are abstracted
with abs_equality, is expressed by an assignment to the Ei variables—used when elim-
inating applications of abs_equality—and an assignment to the other Boolean vari-
ables—representing initial state of control signals, or introduced when eliminating
uninterpreted predicates. We can map an abstract counterexample to a concrete one for
the original model by following:

Step 1. Compute the value of each application of abs_equality, based on the counter-
example assignment to Ei and other Boolean variables in the abstract model.

Step 2. For each application of abs_equality (the arguments are either term variables,
or nested-ITE expressions selecting term variables), compute the values of ITE-con-
trolling formulas in the two arguments.

Step 3. For each application of abs_equality, find the two term variables that will be
10



selected for equality comparison in the abstracted g-equation, given the values of ITE-
controlling formulas computed in Step 2. If this application of abs_equality evaluates
to true, then the two term variables should be equal in order to trigger a corresponding
counterexample in the concrete model; otherwise, they are not equal.

According to Theorem 1, the above steps will result in consistent assignments to low-
level g-equations, without violating the properties of equality.

4.3 Heuristic for Partial Transitivity

In processors with out-of-order completion, the specification side of the commutative
diagram (Figure 1) completes the instructions in program order—assuming the
abstraction function completes the instructions in program order—while the imple-
mentation side may reorder them. In a correct implementation, out-of-order execution
and completion occur only if that would not introduce write-after-read or write-after-
write hazards [10]. That is, destination registers of younger instructions are compared
for equality with both source and destination registers of older instructions (appearing
earlier in program order). A younger instruction is issued/completed only if each older
instruction is issued/completed, or if the younger instruction will not introduce a haz-
ard for an older instruction. The absence of a write-after-write hazard, when the desti-
nation registers of two instructions are not equal, implies that term variable cmp_addr,
used as comparison address for the final states of the register file (see Sect. 2), may
equal only one of these destination registers, but not both, or that will violate a transi-
tivity constraint. That is, if dest1 and dest2 are destination registers compared for
equality by logic for preventing write-after-write hazards, then the comparison of the
final register file states will introduce equations (dest1 = cmp_addr) and (dest2 =
cmp_addr). However, at most one of them can be true, since transitivity of equality
implies that ¬ (dest1 = dest2) ∧ (cmp_addr = dest1) ⇒ ¬(cmp_addr = dest2) and
¬ (dest1 = dest2) ∧ (cmp_addr = dest2) ⇒ ¬(cmp_addr = dest1).

Similar cycles of 3 equations, comparing two destination registers and a source reg-
ister, may be introduced by the control logic in processors with out-of-order execution
or completion—the equation between the two destination registers by logic checking
for write-after-write hazards, and the two equations between a source register and each
of the destination registers by logic checking for read-after-write or write-after-read
hazards. Constraints for transitivity of equality are needed to prevent simultaneous for-
warding of data from two older destination registers that are not equal, and whose
instructions are reordered, to a younger source register. Hence, we can use a heuristic
for enforcing partial transitivity. Let the names of all destination and source register
identifiers contain the substring “Dest” and “Src”, respectively. Then, we can automat-
ically detect pairs of destination registers compared for equality by the control logic.
We can enforce partial transitivity only for such destination registers and any source
registers occurring in equations with them, including term variable cmp_addr. As
noted earlier, partial transitivity is a conservative approximation, since it results in dis-
carding constraints. If the resulting formula F ′ is valid, it will also be valid when
extended with the omitted transitivity constraints, extra_transitivity, to a formula
extra_transitivity ⇒ F ′.
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5  Results

The benchmarks used in the experiments are: 1dlx_c_mc_ex_bp, a single-issue pipe-
lined DLX [10] with multicycle ALU, Instruction Memory, and Data Memory, as well
as with exceptions and branch prediction, modeled and formally verified as described
in [22]; 2dlx_cc_mc_ex_bp, a dual-issue superscalar DLX with in-order execution,
and two identical execution pipelines with all of the above features [22];
9vliw_mc_ex_bp, a 9-wide VLIW processor that also has all of the above features, as
well as the same number and types of functional units as the Intel Itanium [11][19],
and imitates it in predicated execution, register remapping, and advanced loads—mod-
eled and formally verified as described in [23]; xscale, a model of the Intel XScale pro-
cessor [12] with specialized execution pipelines, scoreboarding [10], out-of-order
completion, and imprecise exceptions—modeled and formally verified as described in
[20]; 12pipe, a superscalar processor that can issue up to 12 instructions in program
order on every clock cycle, and is capable of executing only ALU instructions [26];
and 8pipe_ooo, a superscalar model that can issue up to 8 instructions out of program
order on every cycle, and is also capable of executing only ALU instructions [26].

The experiments were performed on a Dell OptiPlex GX260 with a 3.06-GHz Intel
Pentium 4 processor that had a 512-KB on-chip level-2 cache, 2 GB of physical mem-
ory, and was running Red Hat Linux 9. The SAT-checker Siege [17], a top-performer
in the SAT’03 competition [14], was found to have best performance on these bench-
marks and was used for the experiments. The reader is referred to [26] for the transla-
tion to CNF format. All constraints for transitivity of equality were added to the CNF
formulas from buggy implementations and correct models that require transitivity
(xscale and 8pipe_ooo), but were manually switched off for correct models that do not
require transitivity. Transitivity was enforced by triangulating the equality comparison
graphs [6], and adding transitivity constraints for each resulting cycle of length 3. All
models were formally verified by computing the abstraction function with controlled
flushing [8], where the user provides a flushing schedule that avoids the triggering of
stalling conditions, thus simplifying the correctness formula.

Table 1 presents the results with the eij encoding. “Trans” CNF clauses represent
constraints for transitivity of equality. The eij Boolean variables ranged from 62 to
2,724; the total Boolean variables were between 142 and 2,844; the CNF variables
between 1,148 and 115,915; the CNF clauses between 6,207 and 8,395,649; the deci-
sions made by the SAT-checker Siege were between 5,000 and 167,000,000, while the
conflicts that it resolved were between 2,000 and 15,000,000; and the total verification
time was between 0.18 seconds and 41,886 seconds (i.e., 11.6 hours).

Table 2 summarizes the results when abstracting the top-level g-equations, and
using the nested-ITE scheme to eliminate the applications of predicate abs_equality.
The Ei Boolean variables—introduced when eliminating predicate abs_equality—
ranged between 47 and 3,600, while the total number of Boolean variables increased
accordingly. Three of the benchmarks—2dlx_cc_mc_ex_bp, 9vliw_mc_ex_bp, and
xscale—required fewer CNF variables compared with the eij encoding, with a reduc-
tion of 38% for xscale. Five of the benchmarks had fewer CNF clauses relative to the
eij encoding—with a reduction of approximately 50% in the case of xscale and 12pipe,
and a 94% reduction of the transitivity clauses for xscale.
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Table 1. Results from the eij encoding

Processor

Boolean 
Variables CNF 

Vars

CNF Clauses SAT-Checker Siege CPU Time [sec]

eij Total Trans Total decisions conflicts TLSim EVC SAT Total

1dlx_c_mc_ex_bp 62 142 1,148 0 6,207 5×103 2×103 0.04 0.04 0.1 0.18

2dlx_cc_mc_ex_bp 256 414 4,482 0 41,071 36×103 10×103 0.06 0.27 1.18 1.51

9vliw_mc_ex_bp 2,968 3,326 24,373 0 232,209 936×103 101×103 0.1 1.6 37 38.7

xscale 2,387 2,669 43,574 102,480 656,381 72×103 27×103 0.2 3.8 21 25

12pipe 2,724 2,844 115,915 0 8,395,649 167×106 15×106 0.4 57 41,829 41,886

8pipe_ooo 2,129 2,209 35,510 117,462 1,191,215 31×106 15×106 0.2 6 19,981 19,987

Table 2. Abstracting the top-level g-equations, and using the nested-ITE scheme. The speedup is
the total time with the eij encoding divided by the new total time

Processor

Boolean 
Variables CNF 

Vars

CNF Clauses SAT-Checker Siege CPU Time [sec]
Speedup

Ei Total Trans Total decisions conflicts TLSim EVC SAT Total

1dlx_c_mc_ex_bp 47 128 1,188 0 6,415 5×103 1×103 0.04 0.04 0.04 0.12 1.50

2dlx_cc_mc_ex_bp 159 317 4,251 0 32,716 35×103 10×103 0.06 0.27 1 1.33 1.14

9vliw_mc_ex_bp 1,894 2,252 17,481 0 167,567 936×103 122×103 0.1 1.9 41 43 0.90

xscale 333 643 26,857 5,907 326,041 52×103 19×103 0.2 2.5 12.6 15 1.67

12pipe 3,600 3,720 136,800 0 4,216,460 16×106 1×106 0.4 835 2,215 3,050 13.73

8pipe_ooo 2,157 2,638 42,365 134,670 1,021,721 4×106 1×106 0.2 53 1,342 1,395 14.33

Table 3. Abstracting the top-level g-equations, and using the Ackermann-constraint scheme.
The speedup is the total time with the eij encoding divided by the new total time

Processor

Boolean 
Variables CNF 

Vars

CNF Clauses SAT-Checker Siege CPU Time [sec]
Speedup

Ei Total Trans Total decisions conflicts TLSim EVC SAT Total

1dlx_c_mc_ex_bp 47 128 1,254 0 6,592 5×103 1×103 0.04 0.06 0.05 0.15 1.20

2dlx_cc_mc_ex_bp 159 317 4,627 0 33,756 33×103 9×103 0.06 0.27 1.16 1.49 1.01

9vliw_mc_ex_bp 1,894 2,252 20,168 0 175,593 848×103 115×103 0.1 1.95 40 42 0.92

xscale 333 643 27,839 5,907 328,924 44×103 19×103 0.2 2.7 13.4 16 1.56

12pipe 3,600 3,720 192,105 0 4,382,554 17×106 1×106 0.4 839 3,699 4,538 9.23

8pipe_ooo 2,157 2,638 73,680 134,670 1,128,542 4×106 0.9×106 0.2 52 2,001 2,053 9.74

Table 4. Using the heuristic for partial transitivity, abstracting the top-level g-equations, and
applying the nested-ITE scheme. The speedup is the total time with the eij encoding divided by
the new total time

Processor

Boolean 
Variables CNF 

Vars

CNF Clauses SAT-Checker Siege CPU Time [sec]
Speedup

Ei Total Trans Total decisions conflicts TLSim EVC SAT Total

xscale 330 612 26,826 4,089 324,223 52×103 23×103 0.2 2.3 17.1 19.6 1.28

8pipe_ooo 1,684 1,764 41,491 2,772 889,823 4×106 0.9×106 0.2 25 973 998 20.03
13



The conceptually simpler solution space, resulting from the special interpreted pred-
icate abs_equality, reduced the number of decisions for the last 3 benchmarks by up to
an order of magnitude—in the case of 12pipe, the decisions went from 167 million
down to 16 million, and the conflicts from 15 million down to 1 million, speeding up
the verification 13.73×; in the case of 8pipe_ooo, the decisions were reduced from 31
million to 4 million, and the conflicts from 15 million to 1 million, with the speedup
being 14.33 times. Note that the EVC time for translation to SAT increased signifi-
cantly for the two most complex benchmarks—from 57 seconds to 835 seconds
(14.6×) in the case of 12pipe, and from 6 seconds to 53 seconds (8.8×) in the case of
8pipe_ooo—but that was more than offset by the dramatic reduction in the SAT time.

Using Ackermann constraints instead of nested ITEs when enforcing reflexivity,
functional consistency, and functional symmetry—see Table 3—required up to 74%
more CNF variables, and up to 10% more clauses in the case of 8pipe_ooo, resulting in
smaller speedups of 9.23× for 12pipe, and 9.74× for 8pipe_ooo.

Applying the heuristic for partial transitivity when formally verifying the two cor-
rect benchmarks that require transitivity—see Table 4—resulted in a 98% reduction in
the number of transitivity clauses, and a 13% reduction in the total number of clauses
for 8pipe_ooo, increasing the speedup to 20× for that model.

The above benchmarks do not require reflexivity of equality, since the g-equations
are between source and destination register identifiers, which are separate instruction
fields. However, in the M•CORE processor [15], a register identifier is used as both a
source and destination register for the same instruction. Modifying both 12pipe and
8pipe_ooo, so that one of the source registers also served as destination register for the
same instruction, resulted in automatically added reflexivity constraints, since the
symbolic conditions for enforcing reflexivity did not simplify to false in EVC. How-
ever, those benchmarks also passed the safety check without reflexivity, since it is
impossible for a register to be compared with itself in a correct implementation.

The mechanism for enforcing reflexivity was tested by modifying 8pipe_ooo to
require this property after the model was extended with:

t  ←  ITE(new_var, a, b)
f1 ←  (t = a)
f2 ←  (t = b)
f3 ←  f1 ∨  f2

where a and b are arbitrary terms, new_var is a new Boolean variable, and formula f3
was used as additional enabling condition in the forwarding logic of the processor.
Note that when t = a and t = b are abstracted with abs_equality, and the property of
reflexivity is enforced, then f3 will evaluate to true, since f1 will be true when new_var
is true, while f2 will be true when new_var is false. However, without reflexivity, f3
will evaluate to a symbolic expression that will not be constrained to evaluate to true,
and the modified forwarding logic will be incorrect. When reflexivity was not
enforced, the SAT-checker Siege took 12 seconds to find a counterexample. However,
with reflexivity constraints added automatically, only for the applications of
abs_equality where the conditions for enforcing reflexivity (i.e., the syntactic equality
between the two arguments) do not simplify to false, Siege took time comparable to
that for the original 8pipe_ooo.
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Similarly, the mechanism for enforcing transitivity was tested with a variant of
8pipe_ooo. One level of the forwarding logic—where a result is forwarded to the ALU
if a source register src equals a destination register dest—was modified to:

regs_equal_original  ←  (src = dest)
f1  ←  (t = src) ∧  (t = dest)
regs_equal  ←  f1 ∨  regs_equal_original

where t is an arbitrary term, such that the new formula regs_equal was used to control
forwarding of data, as opposed to the original formula regs_equal_original. Note that
if transitivity is enforced, then ((t = src) ∧  (t = dest)) ⇔ (src = dest), i.e., f1 ⇔
regs_equal_original, so that regs_equal ⇔ regs_equal_original, and the modified pro-
cessor will function like the original, where formula regs_equal_original is used to
control forwarding. However, without transitivity, f1 may evaluate to true when
regs_equal_original evaluates to false, so that data may be forwarded incorrectly. With
partial transitivity, a counterexample was found in 15 seconds, but with complete tran-
sitivity, validity was proved in time comparable to that for the original 8pipe_ooo.

To evaluate the efficiency of abs_equality when formally verifying incorrect mod-
els, 10 buggy variants of 12pipe were created. While abs_equality reduced the number
of SAT decisions by up to 2.5×, the number of conflicts by up to 5×, and the SAT-
checking time by up to 5× as well, the total time was always longer compared with the
eij encoding (up to 7×), due to the much increased time for SAT translation.

6  Conclusions

The paper presented a method for automatic abstraction of equations in a logic of
equality by using a special interpreted predicate that satisfies the properties of transi-
tivity, reflexivity, syntactic functional consistency, and syntactic symmetry. This
abstraction is both sound and complete. The abstraction reduced the number of CNF
clauses by up to 50%, and sped up the formal verification by up to an order of magni-
tude relative to the eij method, where a Boolean variable is used to encode each unique
low-level equation between term variables. A heuristic for partial transitivity resulted
in additional speedup for correct benchmarks that need transitivity. Abstracting the
top-level equations had better performance, due to the concise encoding of many low-
level equations between term variables with a single Boolean variable, thus resulting
in an order of magnitude reduction in the number of decisions and the number of con-
flicts, resolved by a SAT-checker when evaluating the Boolean correctness formula.
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