
Appears in the proceedings of the 22nd International Conference on Computer Design (ICCD '04), October 2004, pp. 119–124.
Comparative Study of Strategies for Formal Verification of High-Level Processors

Miroslav N. Velev
mvelev@ece.cmu.edu

http://www.ece.cmu.edu/~mvelev
Abstract
Compared are different methods for evaluation of formulas
expressing microprocessor correctness in the logic of Equality
with Uninterpreted Functions and Memories (EUFM) by transla-
tion to propositional logic, given recently developed efficient
Boolean-to-CNF translations, in order to identify the best overall
translation strategy from EUFM to CNF. The translation from
EUFM to propositional logic is done by exploiting the property
of Positive Equality, allowing us to treat most of the abstract
word-level values as distinct constants while performing com-
plete formal verification. For EUFM formulas from correct
microprocessors, the best translation was by using the eij encod-
ing of g-equations (dual-polarity equations), the nested-ITE
scheme for elimination of uninterpreted predicates, preserving
the ITE-tree structure of equation arguments, and Boolean-to-
CNF translation by encoding the unobservability of logic blocks
by merging them with adjacent gates on the only path to the pri-
mary output. For EUFM formulas from buggy microprocessors,
the best translation was by using the eij encoding of g-equations,
the Ackermann scheme for elimination of uninterpreted predi-
cates, preserving the ITE-tree structure of equation arguments,
and Boolean-to-CNF translation by applying optimizations to
reduce the number of clauses—merging of ITE-trees with one
level of their AND/OR leaves, and exploiting the polarity of gates
and logic blocks to reduce the number of their clauses.

1. Introduction
Every time the design of computer systems was shifted to a
higher level of abstraction, productivity increased. The logic of
Equality with Uninterpreted Functions and Memories (EUFM)
[8]—see Sect. 2—allows us to abstract functional units and
memories, while completely modeling the control path of a pro-
cessor. Restricting the modeling style for defining high-level pro-
cessors with EUFM [27][28] resulted in correctness formulas
where most of the terms (abstracted word-level values) appear
only in positive equations (equality comparisons). Such terms
can be treated as distinct constants [5], thus significantly pruning
the solution space, and resulting in orders of magnitude speedup
of the formal verification; this property is called Positive Equal-
ity. The modeling restrictions, together with techniques to model
multicycle functional units, exceptions, and branch prediction
[29], allowed our tool flow that exploits Positive Equality [31] to
be used to formally verify a model of the M•CORE processor at
Motorola [13], and detect three bugs, as well as corner cases that
were not fully implemented.

Recent dramatic improvements in SAT-solvers [11][18][21]
—see [16][32] for comparative studies—significantly sped up
the solving of Boolean formulas generated in formal verification
of high-level microprocessors [32]. However, as found in [32]
and also confirmed in Sect. 5, the new efficient SAT-solvers
would not have scaled for solving these Boolean formulas if not
for the property of Positive Equality that results in at least 5
1

orders of magnitude speedup when formally verifying complex
dual-issue superscalar processors. Efficient translations to CNF
[34][35][36][37], exploiting the special structure of EUFM for-
mulas produced with the modeling restrictions, resulted in addi-
tional speedup of up to 2 orders of magnitude.

The paper’s contribution is a comparison of translations from
EUFM to propositional logic, given recently developed efficient
Boolean-to-CNF translations [34][35][36][37], in order to iden-
tify the best overall translation strategy from EUFM to CNF.

2. Background

2.1 Translation From EUFM to Propositional Logic
The syntax of EUFM [8] includes terms and formulas. Terms are
used to abstract word-level values of data, register identifiers,
memory addresses, and the entire states of memory arrays. A
term can be an Uninterpreted Function (UF) applied to a list of
argument terms, a term variable, or an ITE operator selecting
between two argument terms based on a controlling formula,
such that ITE(formula, term1, term2) will evaluate to term1 if
formula = true, and to term2 if formula = false. The syntax for
terms can be extended to model memories by means of the inter-
preted functions read and write [8][30] that satisfy the forward-
ing property of the memory semantics—that a read gets the data
value written by the most recent write to the same address, or the
value from the initial memory state otherwise. Formulas are used
to model the control path of a microprocessor, and to express the
correctness condition. A formula can be an Uninterpreted Predi-
cate (UP) applied to a list of argument terms, a Boolean variable,
an ITE operator selecting between two argument formulas based
on a controlling formula, or an equation (equality comparison) of
two terms. Formulas can be negated and combined by Boolean
connectives. We will refer to both terms and formulas as expres-
sions. UFs and UPs are used to abstract functional units by
replacing them with “black boxes” that satisfy only the property
of functional consistency—that equal inputs to the UF (UP) pro-
duce equal output values.

Syntactic equality is the subset of complete equality where a
term variable is equal only to itself, and we will use =SYN to
denote it. The syntactic equality between nested-ITE expressions
that select term variables, is evaluated by pushing the equality to
the ITE leaves, until each equation is between term variables and
so can be replaced with their syntactic equality. For example, if a
and b are syntactically distinct term variables, and f is a formula,
then ITE(f, a, a) =SYN a will be evaluated by first being trans-
formed to ITE(f, (a =SYN a), (a =SYN a)), and then replacing each
low-level syntactic equality with true since both low-level equa-
tions compare the same term variable with itself, resulting in
ITE(f, true, true), i.e., true; however, ITE(f, a, b) =SYN a will
become ITE(f, (a =SYN a), (b =SYN a)), where (b =SYN a) will be
replaced with false since a and b are syntactically distinct term
variables, resulting in ITE(f, true, false), i.e., f.

Restrictions on the style for describing high-level processors

[27][28] reduced the number of terms that appear in both positive
and negated equations (called g-terms for general terms), and
increased the number of terms that appear only in positive equa-
tions (called p-terms for positive terms). The property of Positive
Equality [27][28] allows us to treat syntactically different p-
terms as not equal when evaluating the validity of an EUFM for-
mula, thus achieving dramatic simplifications and orders of mag-
nitude speedup (see [5] for correctness proof).

Applications of the same UF or UP are eliminated with
nested ITEs [28]. For example, if p(a1, b1), p(a2, b2), and p(a3,
b3) are three applications of UP p, where a1, b1, a2, b2, a3, and b3
are terms, then the first application will be eliminated with a new
Boolean variable c1, the second with ITE((a2 = a1) ∧ (b2 = b1),
c1, c2), where c2 is a new Boolean variable, and the third with
ITE((a3 = a1) ∧ (b3 = b1), c1, ITE((a3 = a2) ∧ (b3 = b2), c2, c3)),
where c3 is a new Boolean variable. That is, the second, third,
and any subsequent applications of the UP are eliminated with
ITE-chains that enforce functional consistency. The same method
for eliminating UFs and UPs is used in [14][15][23][31]. Alter-
natively, functional consistency can be enforced with Ackermann
constraints [1]—the three applications of the UP will be replaced
with the new Boolean variables c1, c2, and c3; then, the func-
tional consistency of the second application of the UP with
respect to the first will be enforced by extending the resulting
formula with the constraint (a2 = a1) ∧ (b2 = b1) ⇒ (c2 = c1),
with such constraints added for each pair of applications of that
UP. This method for enforcing functional consistency is used in
[3][12][20][26][38], but does not result in ITE-trees, and so will
not benefit from the CNF translations in Sect. 2.3, and 3. ITE-
trees also result after eliminating a read from a sequence of
writes by accounting for the forwarding property of the memory
semantics, and from modeling conditional instruction flow.

After the UFs are eliminated, the terms consist of only ITE
operators and term variables. A low-level equation is one where
both arguments are term variables. A top-level equation is one
where at least one of the arguments is a nested-ITE expression
having term variables as leaves. In earlier EUFM decision proce-
dures that exploit Positive Equality [14][15][23][31], top-level
equations are eliminated by pushing the equations to the ITE
leaves, and replacing the original equation with a disjunction of
formulas. For example, given terms ITE(c1, a1, a2) and ITE(c2,
b1, b2), where c1 and c2 are formulas, and a1, a2, b1, and b2 are
term variables, the equation ITE(c1, a1, a2) = ITE(c2, b1, b2) will
be replaced with the formula c1 ∧ c2 ∧ (a1 = b1) ∨ c1 ∧ ¬ c2 ∧
(a1 = b2) ∨ ¬c1 ∧ c2 ∧ (a2 = b1) ∨ ¬ c1 ∧ ¬ c2 ∧ (a2 = b2). Note
the structure of the resulting formula—a disjunction of conjunc-
tions of formulas, such that the ITE-tree structure of the original
equation arguments is lost.

Equations between g-term variables (g-equations) can be
either true or false, and can be encoded with Boolean variables
by the following methods:

eij encoding [10]. After the top-level g-equations are eliminated,
each low-level g-equation, gi = gj, where gi and gj are g-term
variables, is replaced by a new Boolean variable eij. Transitivity
of equality, i.e., the property (gi = gj) ∧ (gj = gk) ⇒ (gi = gk) has
to be enforced additionally, e.g., by triangulating the equality
comparison graph of the eij variables that affect the final Boolean
formula and then enforcing transitivity for each of the resulting
triangles [7]. The triangulation is done iteratively, in a greedy
manner, such that at each step: nodes of degree 1 and their single
edges are removed, since such nodes are not part of cycles for
which transitivity of equality has to hold; the node of the smallest
degree n ≥ 2 is found; up to n -1 extra edges are added, if they do
not exist already, in order to form n -1 triangles with the node’s
2

edges; the node and its edges are removed, and the procedure is
applied to the remaining nodes by considering the newly added
edges; finally, the original and the extra edges are put together to
form the triangulated equality comparison graph. Although not
every correct microprocessor requires transitivity for its correct-
ness proof, that property is needed in order to avoid false nega-
tives for buggy designs or for processors that do need transitivity.

small-domain encoding [20]. Top-level g-equations are again
eliminated. Every g-term variable is assigned a set of constants
that it can take on in a way that allows it to be either equal to or
different from any other g-term variable with which it can be
transitively compared for equality with. If there are N constants
in the set for a g-term variable, those can be indexed with
log2(N) new Boolean variables that will be used to control
nested ITE operators selecting a mapping of the g-term variable
to a constant in the set. Then, two g-term variables will be equal
if their indexing variables simultaneously select the same com-
mon constant. Hence, g-term variables in a cycle can be equal if
they simultaneously evaluate to the same common constant, so
that transitivity of equality is automatically enforced in this
encoding. Depending on the structure of the equality comparison
graph, the small-domain encoding might introduce fewer pri-
mary Boolean variables than the eij encoding. That would mean a
smaller search space. However, now many g-equations will get
replaced by a Boolean formula—a disjunction of conjunctions,
each consisting of many Boolean variables or their complements,
and encoding the possibility that the two g-term variables evalu-
ate to the same common constant. In contrast, in the eij encoding,
a g-equation always gets replaced by a single Boolean variable.

interpreted predicate abs_equality() [33]. Each top-level g-
equation is automatically abstracted with an application of a spe-
cial interpreted predicate abs_equality() that satisfies the proper-
ties of transitivity, reflexivity, syntactic symmetry, and syntactic
functional consistency. This abstraction is sound and complete.
To adopt the nested-ITE scheme for eliminating the applications
of abs_equality(), each ITE-controlling formula is extended to
account for syntactic symmetry, while the top ITE expression is
disjuncted with the condition for syntactic equality between the
two arguments, thus ensuring reflexivity. That is, the first appli-
cation of abs_equality(t1, t2), where t1 and t2 are terms, is elimi-
nated with (t1 =SYN t2) ∨ E1, where E1 is a new Boolean
variable, and the disjunction of (t1 =SYN t2) ensures reflexivity. A
second application abs_equality(t3, t4) is eliminated with (t3 =SYN
t4) ∨ ITE((t3 =SYN t1) ∧ (t4 =SYN t2) ∨ (t4 =SYN t1) ∧ (t3 =SYN t2),
E1, E2), where E2 is a new Boolean variable, and the disjunction
of (t3 =SYN t4) ensures reflexivity. In the controlling formula, the
expression (t3 =SYN t1) ∧ (t4 =SYN t2) ensures syntactic functional
consistency, as in the original nested-ITE scheme for elimination
of UFs and UPs, and the disjunction of (t4 =SYN t1) ∧ (t3 =SYN t2)
ensures syntactic symmetry. A third application abs_equality(t5,
t6) is eliminated with (t5 =SYN t6) ∨ ITE((t5 =SYN t1) ∧ (t6 =SYN t2)
∨ (t6 =SYN t1) ∧ (t5 =SYN t2), E1, ITE((t5 =SYN t3) ∧ (t6 =SYN t4) ∨
(t6 =SYN t3) ∧ (t5 =SYN t4), E2, E3)), where E3 is a new Boolean
variable. Alternatively, syntactic symmetry and syntactic func-
tional consistency can be enforced by a modified version of the
Ackermann scheme for functional consistency [1], but that
results in worse performance than the above modified nested-ITE
scheme. Transitivity is enforced by triangulating the top-level
equality-comparison graph.

2.2 Conventional Boolean-to-CNF Translation
A primary CNF variable is one representing the value of a pri-
mary input, i.e., input of the original Boolean circuit. An auxil-

iary CNF variable is one representing the value of a gate output.
In general, the translation of Boolean formulas to CNF is expo-
nential. However, by introducing a new CNF variable for the out-
put of every logic gate, and imposing constraints that preserve
the function of that gate [25], we get a satisfiability-equivalent
CNF. Both the size of the CNF and the complexity of the transla-
tion are linear in the size of the original Boolean formula.

Instead of explicitly translating the inverters (NOT gates), we
can subsume them in their fanout gates [19], by replacing all
instances of the CNF variable for the inverter output with the
negated CNF variable for the inverter input, thus eliminating the
output variable and the 2 clauses for each inverter.

2.3 Translation from Propositional Logic to CNF by
Merging ITE-Trees and Other Gate Groups

We can preserve the ITE-tree structure of equation arguments
when pushing the equations to the leaves [35], producing Bool-
ean formulas with many ITE-trees. That is, the equation ITE(c1,
a1, a2) = ITE(c2, b1, b2) will be replaced with the formula ITE(c1,
ITE(c2, a1 = b1, a1 = b2), ITE(c2, a2 = b1, a2 = b2)). Then, an ITE-
tree can be translated to CNF with a unified set of clauses [35],
without intermediate variables for outputs of ITEs inside the tree.
For every path from a non-controlling input of the tree, we intro-
duce 2 clauses: the first expressing the condition that if the input
is true and is selected to appear at the tree output, o, by a corre-
sponding assignment to controlling formulas of ITEs that are
ahead in the tree, then the tree output should be true; the second
expressing the condition that if the input is false and selected,
then the tree output, o, should be false.

ITE-trees can be further merged with 1 or more levels of their
AND/OR leaves that have fanout count of 1. We can also merge
other gate groups [34], e.g., AND/OR→ITE (an ITE with an
AND or OR as its then- or else-input, or a different AND/OR
gate at each of these inputs), AND/ITE→OR, and OR/
ITE→AND, but that results in minor additional improvements if
ITE-trees are merged [35]. Note that a driven gate may have
many input gates with fanout count of 1. Then, we can choose
which one to merge by using a variant of the FANIN heuristic
[17] for BDD-variable ordering—selecting the input gate with
highest topological level. The motivation is to shorten the longest
path for BCP from a primary input to the output of the driven
gate. Thus, if the heuristic is applied to many groups, we could
significantly shorten many paths for BCP from primary inputs to
the output of the circuit.

We will call a logic block any group of connected gates with
only one output signal leaving the block. The functionality of
every logic block can be expressed with a set of implications. A
positive (negative) implication is one that implies a value of true
(false) for the block output.

3. Encoding the Unobservability of Logic Blocks

3.1 Encoding Local Unobservability of Logic Blocks
by Merging Them with Adjacent Gates

The controlling (input) value of an AND or OR gate uniquely
determines the value of the gate, regardless of the values of the
other inputs, i.e., the controlling value of an AND is 0 (false) and
of an OR is 1 (true). The non-controlling value of an AND (OR)
is the negation of that gate’s controlling value, i.e., 1 (0).

We can account for the local unobservability context of a
logic block by merging it with adjacent gates that are on the only
path from the block output to the circuit output [37]. Then, if one
of those gates has a controlling value on an input that is not along
3

this path, all clauses for the logic block will get satisfied, thus
allowing a conventional CNF-based SAT-solver to exploit unob-
servability. Note that when a logic block is merged with an adja-
cent AND gate, the other inputs to the AND will affect only the
positive implications of the new block, while the negative impli-
cations will be the same as in the original block, since the nega-
tive implications of the original block determine conditions for a
controlling value of 0 at the AND input driven by the original
block. Similarly, if a logic block is merged with an adjacent OR
gate, the other inputs to the OR will affect only the negative
implications of the new block. If a logic block is merged with an
adjacent ITE, where the block output drives either the then-input
or the else-input, then the ITE controlling input will affect both
the positive and the negative implications of the new block. Each
of the other inputs of a merged AND (OR) gate will determine an
implication for the new block’s output for cases when the input
has a controlling value and thus uniquely determines the output
value of that AND (OR) gate, i.e., the output value of the new
block. For a merged ITE, the other non-controlling input, which
is not along the merged path, will result in 2 implications—for
the cases when the input is true (false) and its value is selected to
propagate to the output of the new block. By merging a logic
block with an adjacent gate, we will reduce the variables by 1
(eliminating the variable for the output of the original logic
block), and the clauses by 2 (eliminating the 2 clauses for the
gate output as a function of the logic block’s output value). The
new block can be similarly merged with more gates until reach-
ing a fanout point. Further merging the block with gates along
each of the fanout paths will require replication of the constraints
for the block’s functionality for each of those paths, and so will
increase the number of clauses and slow down the SAT-solving.

3.2 Using Unobservability Variables to Encode the
Local and Global Unobservability of Logic Blocks

An alternative way to encode the local unobservability of a logic
block is to introduce a CNF unobservability variable [37], repre-
senting the conditions when the block’s output is unobservable at
the primary output. Such conditions depend on values of inputs
to nearby gates situated on a fanout-free partial path from the
block output toward the primary output. A CNF logic variable is
still used to represent the logic value of the block output. The
unobservability variable for a logic block is disjuncted to each
clause for that block, so that when the unobservability variable is
1—meaning that the logic block is not observable at the primary
output—all clauses for that block will be satisfied and a conven-
tional CNF-based SAT-solver will have more freedom in assign-
ing values to the variables in these clauses, possibly leaving
some of those variables unassigned. A value of 0 assigned to a
CNF unobservability variable means that the block’s output
value may be allowed to propagate to the end of the fanout-free
partial path from the block output toward the primary output, and
so may be observable at the primary output. In this paper, a CNF
unobservability variable is introduced only for ITE-trees with
fanout count of 1.

In order to more fully exploit the unobservability of a logic
block, we can account for its global unobservability [36]. An
unobservability check-point is a signal that has an associated
CNF unobservability variable. The nearest cutset of unobserv-
ability check-points for a block consists of the unobservability
check-points that are each situated on a different path from the
block output to the primary output, covering all such paths, such
that each of these check-points is closest to the block compared
to other unobservability check-points on the same path from the
block output to the primary output.

A new constraint for unobservability of each block is added,
in order to express the condition that if all of the nearest unob-
servability check-points are unobservable, then the block is
unobservable, since each path from the block output to the pri-
mary output will go through one of those unobservability check-
points. We also need to extend the constraint for local observabil-
ity of each block at the end of its fanout-free partial path toward
the primary output, by accounting for the observability of each of
the nearest unobservability check-points. If the block is observ-
able at the end of its partial path toward the primary output, and
one of the nearest unobservability check-points is observable,
then the block is considered observable.

4. Exploiting the Polarity of Logic Blocks to
Reduce the Number of Their Clauses

A logic block appears in only positive (negative) polarity if all
the paths from its output to the Boolean circuit output have an
even number of negations or no negations (an odd number of
negations), and in dual polarity if some paths have an even num-
ber of negations or no negations, while others have an odd num-
ber of negations. The following theorem [37] is a generalization
of a theorem by Plaisted and Greenbaum [19] for single gates:

THEOREM. Keeping only the clauses from positive (negative)
implications for logic blocks that appear in only negative (posi-
tive) polarity results in a satisfiability-equivalent CNF formula.

5. Comparison of Translation Strategies on
EUFM Formulas from Correct Processors

The goal of this section is to compare the three encodings on g-
equations—eij, small-domain, and the special interpreted predi-
cate abs_equality()—on EUFM formulas from correct proces-
sors, given the CNF translations from Sect. 2.3, 3, and 4. Also,
since the small-domain encoding replaces each g-term variable
with an ITE-tree selecting a constant from the set assigned to that
variable, studied is the benefit from preserving the ITE-tree
structure of the expressions replacing g-term variables.

The computer used for the experiments was a Dell OptiPlex
GX260 having a 3.06-GHz Intel Pentium 4 processor with a 512-
KB on-chip L2 cache, 2 GB of physical memory, and running
Red Hat Linux 9.0. The Boolean correctness formulas produced
by exploiting Positive Equality were evaluated with the SAT-
solver siege_v4 [21][22]. The experiments were to formally ver-
ify safety of the benchmarks: ooo_engine6, an out-of-order
processor with a 6-entry reorder buffer, 6 reservation stations,
register renaming, and register-register ALU instructions;
1dlx_m_iq29, a single-issue pipelined DLX with multicycle
functional units, exceptions, branch prediction, and a 29-entry
instruction queue; 9vliw_5_iq4, a 9-wide, 5-stage VLIW pro-
cessor that implements predicated execution, register remapping,
advanced loads, and a 4-entry instruction queue; 14pipe, a 14-
wide, 5-stage pipelined processor with in-order execution, imple-
menting register-register ALU and load instructions; and
9pipe_ooo, a 9-wide, 5-stage pipelined processor with out-of-
order execution, as well as ALU and load instructions. The num-
ber of instruction queue entries in these designs, or their issue
widths were chosen so that the experiments for each design could
complete for all of the encodings, given the available memory.

Compared were the following Boolean-to-CNF translations:

old translation—without preserving the ITE-tree structure of
equation arguments but representing the equations with disjunc-
tions of conjunctions (see Sect. 2.1), followed by conventional
translation to CNF by subsuming inverters in the driven gates;
4

merging of ITE-trees—in a variant without merging the ITE-
trees with AND/OR leaves that have fanout count of 1, and by
preserving the ITE-tree structure of equation arguments—this
strategy had the best performance in [35], where the experiments
were based on the eij encoding and the nested-ITE scheme for UP
elimination; two variants were also explored—by merging the
ITE-trees with 1 level of AND/OR leaves that have fanout count
of 1, and by merging the ITE-trees with 2 levels of AND/OR
leaves that have fanout count of 1;

method (1)—the first method for encoding the unobservability
of logic blocks (ITE-trees in the experiments) with fanout count
of 1—by merging them with adjacent gates on the only path from
the block output toward the primary output (see Sect. 3.1), after
merging those ITE-trees, and by preserving the ITE-tree structure
of equation arguments—this method had the best performance in
[37], where the experiments were based on the eij encoding and
the nested-ITE scheme for UP elimination.

The results are summarized in Table 1 for each of the three
encodings of g-equations, as well as for the small-domain encod-
ing with preserving the ITE-tree structure of expressions that
replace the g-term variables (“small-domain + ITEs”). For two of
the benchmarks, 1dlx_m_iq29 and 9vliw_5_iq4, the eij
encoding was also combined with the Ackermann scheme for
eliminating UPs; the other three designs do not have functional
units abstracted with UPs. Transitivity constraints were needed
only for the out-of-order processors, ooo_engine6 and
9pipe_ooo, when the eij encoding or the interpreted predicate
abs_equality() was used, such that for the latter only partial tran-
sitivity was enforced [33].

From the total verification times in Table 1, the eij encoding
had the best performance on 4 of the 5 benchmarks—
ooo_engine6, 1dlx_m_iq29, 14pipe, and 9pipe_ooo—
while the special interpreted predicate abs_equality() was best on
the other benchmark—9vliw_5_iq4. Method (1) had the best
performance on 4 of the 5 benchmarks, except on ooo_engine6,
where best was the strategy of merging ITE-trees with 2 levels of
leaves, resulting in 5× speedup compared to the other strategies
of merging the ITE-trees. For benchmark 1dlx_m_iq29, the eij
encoding, combined with the Ackermann scheme for UP elimi-
nation, was marginally better than when combined with the
nested-ITE scheme for UP elimination, but that was not the case
for versions of the benchmark with longer instruction queues.

Given the advantage of the interpreted predicate
abs_equality() on benchmark 9vliw_5_iq4, compared to the eij
encoding, when both are combined with Boolean-to-CNF trans-
lation with method (1)—see Table 1—would that advantage be
preserved for more complex versions of the same benchmark
with longer instruction queues? On models with between 6 and
10 instruction queue entries, the interpreted predicate
abs_equality() took between 30% less time to 20% longer, but
introduced 50% more CNF variables and more than twice the
CNF clauses for the design with 10 instruction queue entries.
Furthermore, when using abs_equality() for the models with 11,
12, and 13 instruction queue entries, the EUFM decision proce-
dure EVC ran out of memory, while it could complete the trans-
lation to CNF when the eij encoding was used instead.

Therefore, from Table 1 and from the above paragraph, the
most efficient translation for EUFM formulas from correct
designs is by using the eij encoding of g-equations, the nested-
ITE scheme for elimination of uninterpreted predicates, preserv-
ing the ITE-tree structure of equation arguments, and Boolean-
to-CNF translation with method (1).

Experiments were also run to determine the benefit from pre-
processing the CNF formulas generated in the experiments for

Table 1. Comparison of the three g-equation encodings on unsatisfiable Boolean formulas from correct processors—decisions and
conflicts by the SAT-solver siege_v4, and total formal verification time with each encoding.

Processor Encoding of
g-equations

Decisions ×106 / Conflicts ×106 Time (TLSim + EVC + siege_v4) [sec]

old
trans-
lation

merging of ITE-trees
old

trans-
lation

merging of ITE-trees

w/o leaves
+ 1

level of
leaves

+ 2
levels of
leaves

Method (1) w/o leaves
+ 1

level of
leaves

+ 2
levels of
leaves

Method (1)

ooo_engine6
eij 0.4 / 0.3 0.2 / 0.2 0.2 / 0.1 0.1 / 0.1 0.2 / 0.2 646 216 154 43 186

small-domain 0.4 / 0.3 0.3 / 0.2 0.3 / 0.2 0.1 / 0.1 0.4 / 0.2 660 262 286 57 287
small-domain + ITEs 0.4 / 0.3 0.3 / 0.2 0.3 / 0.2 0.1 / 0.1 0.4 / 0.2 712 239 261 49 277

abs_equality() 1.1 / 0.9 1.0 / 0.8 0.8 / 0.6 0.1 / 0.1 1.0 / 0.8 1,956 1,248 951 124 1,232

1dlx_m_iq29
eij 4.5 / 0.3 3.7 / 0.2 4.3 / 0.2 4.4 / 0.2 3.3 / 0.1 1,289 248 262 241 232

eij + Ackermann UPs 4.1 / 0.2 3.8 / 0.2 3.9 / 0.2 4.2 / 0.2 3.0 / 0.1 992 255 236 255 222
small-domain 5.9 / 0.4 5.0 / 0.3 3.9 / 0.2 4.1 / 0.3 4.1 / 0.2 2,417 749 583 670 523

small-domain + ITEs 11.8 / 0.3 5.3 / 0.3 5.4 / 0.2 4.4 / 0.2 4.1 / 0.2 2,237 534 469 355 381
abs_equality() 4.1 / 0.3 4.1 / 0.2 5.3 / 0.2 4.5 / 0.2 3.9 / 0.2 1,767 548 628 562 479

9vliw_5_iq4
eij 46.7 / 1.7 31.2 / 0.9 38.0 / 1.1 36.7 / 1.0 25.4 / 0.8 3,205 784 910 853 598

eij + Ackermann UPs 42.5 / 1.5 37.4 / 1.1 37.8 / 1.1 31.7 / 0.9 21.9 / 0.6 2,781 992 853 764 421
small-domain 37.0 / 1.2 25.3 / 0.8 18.9 / 0.7 21.0 / 0.8 18.3 / 0.7 14,825 7,189 5,764 6,377 5,565

small-domain + ITEs 103.2 / 0.9 49.3 / 0.7 43.6 / 0.6 47.5 / 0.7 32.1 / 0.5 17,200 2,706 1,955 2,296 1,542
abs_equality() 32.3 / 1.0 34.9 / 1.1 32.6 / 1.0 35.0 / 1.1 15.1 / 0.5 1,610 920 870 843 346

14pipe
eij 52.8 / 1.3 30.6 / 0.8 45.1 / 1.3 34.2 / 0.7 29.9 / 0.8 10,758 744 1,381 731 719

small-domain 52.8 / 5.0 13.7 / 1.3 20.0 / 1.5 20.5 / 1.5 13.5 / 1.2 65,506 5,062 7,218 7,417 4,885
small-domain + ITEs 79.0 / 3.7 28.5 / 1.2 38.2 / 1.4 40.1 / 1.5 28.5 / 1.3 57,712 3,766 5,223 5,659 3,786

abs_equality() 24.6 / 0.7 31.2 / 0.7 29.6 / 0.7 36.5 / 0.9 33.0 / 0.8 6,154 4,048 4,071 4,266 4,338

9pipe_ooo
eij 3.1 / 1.0 1.7 / 0.4 1.7 / 0.4 1.7 / 0.4 1.5 / 0.4 1,665 239 245 241 222

small-domain 7.0 / 2.0 6.2 / 1.5 6.5 / 1.5 6.7 / 1.5 6.1 / 1.5 5,542 1,906 1,930 1,948 1,894
small-domain + ITEs 10.1 / 1.6 7.8 / 1.0 8.2 / 1.0 8.4 / 1.0 8.3 / 1.2 4,321 820 936 955 941

abs_equality() 3.9 / 0.5 4.1 / 0.6 4.8 / 0.7 4.8 / 0.6 4.8 / 0.7 594 317 344 295 330

Table 2. Comparison of translation strategies on satisfiable Boolean formulas from 10 buggy variants of processor 9vliw_5_iq6.

Strategy for Translation from EUFM to CNF
CPU Time [sec]

Min. Average Max.

Method (0) + eij 70 1,220 2,321

Method (0a) + eij 24 803 1,920

Method (0a) + eij + Ackermann UPs 18 671 1,890

Method (0a) + abs_equality() 14 640 1,283

Method (1) + eij 76 1,357 2,909

Method (1a) + eij 14 654 1,498

Method (1a) + eij + Ackermann UPs 25 530 1,030

Method (1a) + abs_equality() 20 637 1,655

Method (2) + eij 132 1,216 3,043

Method (2a) + eij 35 579 1,149

Method (2a) + eij + Ackermann UPs 3 503 1,130

Method (2a) + abs_equality() 29 605 1,442

Method (2g) + eij 31 793 1,982

Method (2ga) + eij 3 665 1,357

Method (2ga) + eij + Ackermann UPs 25 580 1,149

Method (2ga) + abs_equality() 28 571 1,653

Running all of the above strategies in parallel and stopping when one solution found 3 310 708
9vliw_5_iq4 and more complex variants with longer instruc-
tion queues and with more pipeline stages, by using the recently
developed preprocessor NiVER [24] in a mode that allows it to
increase the total literal count by 10. That number was used in
experiments in [24], and led to speedups of up to 2–3× for SAT-
solving of preprocessed versions of simpler CNF formulas from
our earlier work. However, preprocessing the CNF formulas
from the variants of 9vliw_5_iq4—both the versions generated
with the old translation, and the versions generated with method
(1)—resulted in comparable or longer times, compared to SAT-
solving the original CNF formulas without preprocessing.
5

Does Positive Equality still matter? Without Positive Equal-
ity—using the eij encoding for all equations, including p-equa-
tions, as originally done by Goel et al. [10], and applying method
(1), i.e., the most efficient translation for EUFM formulas from
correct designs—the formal verification of a correct dual-issue
superscalar DLX processor with exceptions, multicycle func-
tional units and branch prediction [29] did not complete in
110,000 seconds, compared to finishing in 1.1 second with Posi-
tive Equality. Thus, Positive Equality results in at least 5 orders
of magnitude speedup for complex designs, even with state-of-
the-art SAT-solvers and the best translation from EUFM to CNF.

6. Comparison of Translation Strategies on
EUFM Formulas from Buggy Processors

In addition to method (1), compared were:

method (0)—merging of ITE-trees with one level of AND/OR
leaves that have fanout count of 1;

method (2)—encoding only the local unobservability of logic
blocks (ITE-trees) by using unobservability variables;

method (2g)—extension of method (2) by also encoding the glo-
bal unobservability of logic blocks.

Each of these strategies was also implemented in variant (a)
where the ITE-trees were merged with one level of their AND/
OR leaves that have fanout count of 1, and the polarity of gates
and logic blocks was exploited to reduce the number of their
clauses, such that this optimization was applied to ITE-trees,
ITE-trees merged with AND/OR leaves or with adjacent gates on
the only path to the primary output, as well as to AND/OR→ITE,
ITE→AND, and ITE→OR groups. Also evaluated were two
modifications of variants (a)—by using the Ackermann scheme
to eliminate the UPs instead of the nested-ITE scheme, and by
using the special interpreted predicate abs_equality() to encode
the g-equations instead of the eij encoding. Table 2 summarizes
the results from 10 buggy models of processor 9vliw_5_iq6 (a
variant of 9vliw_5_iq4 with a 6-entry instruction queue).

Best was method (1a), combined with the eij encoding of g-
equations and the Ackermann scheme for UP elimination, since
that strategy reduced the most the maximum CPU time. If suffi-
cient CPUs are available for parallel runs of the tool flow with
each of these 16 strategies, stopping the rest of the runs as soon
as one returns a solution, we can reduce the maximum CPU time
to about 70% of its value with method (1a), combined with the
Ackermann scheme for UP elimination, as shown in the last row
of Table 2, i.e., the speedup from parallel runs with different
strategies is insignificant.

7. Related Work
In previous research [32], the eij encoding was found to outper-
form the small-domain encoding when formally verifying sim-
pler microprocessors than those used here. A comparison of the
eij, small-domain, and a pseudo-Boolean encoding of g-equa-
tions, based on a different set of benchmarks, is presented in [6].
A hybrid encoding of g-equations, combining the strengths of the
eij and small-domain encodings, is presented in [6][23]. How-
ever, all these studies were done with conventional translation to
CNF, and with less efficient SAT-solvers.

In the EUFM decision procedure used in this paper, the trans-
lation to CNF is done in a single step, by including all transitivity
constraints if the eij encoding or the interpreted predicate
abs_equality() are applied, i.e., the translation is eager, as is also
the case in [6][23]. In lazy translation to SAT [2][3][4][9]—con-
straints are added incrementally to prevent recurrence of false
counterexamples—but this significantly degrades the perfor-
mance when deciding complex EUFM formulas [23].

8. Conclusions
Compared were different methods for translation from EUFM to
propositional logic, given recently developed efficient Boolean-
to-CNF translations. For formulas from correct microprocessors,
the best translation was by using the eij encoding of g-equations,
the nested-ITE scheme for UP elimination, preserving the ITE-
tree structure of equation arguments, and Boolean-to-CNF trans-
lation with method (1)—by merging of ITE-trees and other gate
groups, as well as merging of ITE-trees having fanout count of 1
6

with adjacent gates on the only path to the primary output. This
strategy was most efficient for unsatisfiable Boolean formulas
from correct designs, since the strategy exploits effectively the
unobservability of logic blocks, and also results in higher deci-
sion priority for CNF variables that control ITEs at the top of
ITE-trees, thus resulting in optimal learning and pruning of the
solution space. For EUFM formulas from buggy microproces-
sors, the best translation was by using the eij encoding of g-equa-
tions, the Ackermann scheme for UP elimination, preserving the
ITE-tree structure of equation arguments, and Boolean-to-CNF
translation with method (1a)—extension of method (1) by also
merging the ITE-trees with one level of their AND/OR leaves
that have fanout count of 1, and exploiting the polarity of gates
and logic blocks to reduce the number of their clauses. This strat-
egy was most efficient for satisfiable Boolean formulas from
buggy designs, since the strategy results in the greatest reduction
in the number of clauses, thus making it easier for a SAT-solver
to satisfy the resulting CNF formula.

Even with state-of-the-art SAT-solvers and the most efficient
EUFM-to-CNF translation, Positive Equality still results in at
least 5 orders of magnitude speedup for correct versions of com-
plex dual-issue superscalar processors. Furthermore, the speedup
is increasing with the complexity of the designs.

References
[1] W. Ackermann, Solvable Cases of the Decision Problem, North-Holland, Amsterdam, 1954.
[2] G. Audemard, P. Bertoli, A. Cimatti, A. Korniowicz, and R. Sebastiani, “A SAT Based Approach for Solving

Formulas over Boolean and Linear Mathematical Propositions,” 11th International Conference on Automated
Deduction (CADE ’02), LNCS 2392, Springer-Verlag, July 2002, pp. 195–210.

[3] C. Barrett, D. Dill, and A. Stump, “Checking Satisfiability of First-Order Formulas by Incremental Translation to
SAT,” Computer-Aided Verification (CAV ’02), LNCS 2404, July 2002.

[4] C. Barrett, and S. Berezin, “CVC Lite: A New Implementation of the Cooperating Validity Checker,” Computer-
Aided Verification (CAV ’04), LNCS, Springer-Verlag, July 2004.

[5] R.E. Bryant, S. German, and M.N. Velev, “Processor Verification Using Efficient Reductions of the Logic of
Uninterpreted Functions to Propositional Logic,” ACM Transactions on Computational Logic (TOCL), Vol. 2,
No. 1 (January 2001), pp. 93–134.

[6] R.E. Bryant, S.K. Lahiri, and S.A. Seshia, “Deciding CLU Logic Formulas via Boolean and Pseudo-Boolean
Encodings,” Workshop on Constraints in Formal Verification (CFV ’02), September 2002.

[7] R.E. Bryant, and M.N. Velev, “Boolean Satisfiability with Transitivity Constraints,” ACM Transactions on Com-
putational Logic (TOCL), Vol. 3, No. 4 (October 2002), pp. 604–627.

[8] J.R. Burch, and D.L. Dill, “Automated Verification of Pipelined Microprocessor Control,” Computer-Aided Ver-
ification (CAV ’94), LNCS 818, Springer-Verlag, June 1994.

[9] L. de Moura, H. Rueß, and M. Sorea, “Lazy Theorem Proving for Bounded Model Checking over Infinite
Domains,” 11th International Conference on Automated Deduction (CADE ’02), LNCS 2392, July 2002.

[10] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD Based Procedures for a Theory of Equality with
Uninterpreted Functions,” Computer-Aided Verification (CAV ’98), Springer-Verlag, June 1998.

[11] E. Goldberg, and Y. Novikov, “BerkMin: A Fast and Robust Sat-Solver,” Design, Automation, and Test in
Europe (DATE ’02), March 2002, pp. 142–149.

[12] R.B. Jones, D.L. Dill, and J.R. Burch, “Efficient Validity Checking for Processor Verification,” International
Conference on Computer-Aided Design (ICCAD ’95), 1995.

[13] S. Lahiri, C. Pixley, and K. Albin, “Experience with Term Level Modeling and Verification of the M•CORE™

Microprocessor Core,” High Level Design, Validation and Test (HLDVT ’01), November 2001.
[14] S.K. Lahiri, S.A. Seshia, and R.E. Bryant, “Modeling and Verification of Out-of-Order Microprocessors in

UCLID,” Formal Methods in Computer-Aided Design (FMCAD ’02), LNCS 2517, November 2002.
[15] S.K. Lahiri, and R.E. Bryant, “Deductive Verification of Advanced Out-of-Order Microprocessors,” Computer-

Aided Verification (CAV ’03), LNCS, Springer-Verlag, July 2003.
[16] D. Le Berre, and L. Simon, “Results from the SAT’04 Solver Competition,” Theory and Applications of Satisfi-

ability Testing (SAT ’04), 2004.
[17] S. Malik, A.R. Wang, R.K. Brayton, and A. Sangiovani-Vincentelli, “Logic Verification Using Binary Decision

Diagrams in a Logic Synthesis Environment,” International Conference on Computer-Aided Design, 1988.
[18] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an Efficient SAT

Solver,” 38th Design Automation Conference (DAC ’01), June 2001.
[19] D.A. Plaisted, and S. Greenbaum, “A Structure Preserving Clause Form Translation,” Journal of Symbolic Com-

putation (JSC), Vol. 2, 1985, pp. 293–304.
[20] A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel, “The Small Model Property: How Small Can It Be?”, Journal

of Information and Computation, Vol. 178, No. 1 (October 2002).
[21] L. Ryan, Siege SAT Solver. http://www.cs.sfu.ca/~loryan/personal/
[22] L. Ryan, “Efficient Algorithms for Clause-Learning SAT Solvers,” M.S. Thesis, Simon Fraser University, Can-

ada, February 2004.
[23] S.A. Seshia, S.K. Lahiri, and R.E. Bryant, “A Hybrid SAT-Based Decision Procedure for Separation Logic with

Uninterpreted Functions,” Design Automation Conference (DAC ’03), 2003.
[24] S. Subbarayan, and D.K. Pradhan, “NiVER: Non Increasing Variable Elimination Resolution for Preprocessing

SAT Instances,” Theory and Applications of Satisfiability Testing (SAT ’04), May 2004.
[25] G.S. Tseitin, “On the Complexity of Derivation in Propositional Calculus,” in Studies in Constructive Mathemat-

ics and Mathematical Logic, Part 2, 1968, pp. 115–125. Reprinted in J. Siekmann, and G. Wrightson, eds., Auto-
mation of Reasoning, Vol. 2, Springer-Verlag, 1983.

[26] O. Tveretina, and H. Zantema, “A Proof System and a Decision Procedure for Equality Logic,” Technical
Report, Department of Computer Science, Technical University of Eindhoven, 2003.

[27] M.N. Velev, and R.E. Bryant, “Exploiting Positive Equality and Partial Non-Consistency in the Formal Verifica-
tion of Pipelined Microprocessors,” 36th Design Automation Conference (DAC ’99), June 1999.

[28] M.N. Velev, and R.E. Bryant, “Superscalar Processor Verification Using Efficient Reductions of the Logic of
Equality with Uninterpreted Functions to Propositional Logic,” Correct Hardware Design and Verification Meth-
ods (CHARME ’99), LNCS 1703, Springer-Verlag, September 1999.

[29] M.N. Velev, and R.E. Bryant, “Formal Verification of Superscalar Microprocessors with Multicycle Functional
Units, Exceptions, and Branch Prediction,” Design Automation Conference (DAC ’00), 2000.

[30] M.N. Velev, “Automatic Abstraction of Memories in the Formal Verification of Superscalar Microprocessors,”
Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’01), T. Margaria, and W. Yi, eds.,
LNCS 2031, Springer-Verlag, April 2001, pp. 252–267.

[31] M.N. Velev, and R.E. Bryant, “TLSim and EVC: A Term-Level Symbolic Simulator and an Efficient Decision
Procedure for the Logic of Equality with Uninterpreted Functions and Memories,” International Journal of
Embedded Systems (IJES), 2004.

[32] M.N. Velev, and R.E. Bryant, “Effective Use of Boolean Satisfiability Procedures in the Formal Verification of
Superscalar and VLIW Microprocessors,” Journal of Symbolic Computation (JSC), Vol. 35, No. 2, 2003.

[33] M.N. Velev, “Automatic Abstraction of Equations in a Logic of Equality,” Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX ’03), LNAI 2796, September 2003, pp. 189–206.

[34] M.N. Velev, “Efficient Translation of Boolean Formulas to CNF in Formal Verification of Microprocessors,”
Asia and South Pacific Design Automation Conference (ASP-DAC ’04), January 2004.

[35] M.N. Velev, “Exploiting Signal Unobservability for Efficient Translation to CNF in Formal Verification of
Microprocessors,” Design, Automation and Test in Europe (DATE ’04), February 2004, pp. 266–271.

[36] M.N. Velev, “Encoding Global Unobservability for Efficient Translation to SAT,” 7th International Conference
on Theory and Applications of Satisfiability Testing (SAT ’04), May 2004.

[37] M.N. Velev, “Comparison of Schemes for Encoding Unobservability in Translation to SAT,” submitted for publi-
cation.

[38] H. Zantema, and J.F. Groote, “Transforming Equality Logic to Propositional Logic,” 4th International Workshop
on First Order Theorem Proving (FTP ’03), June 2003.

	1. Introduction
	2. Background
	2.1 Translation From EUFM to Propositional Logic
	2.2 Conventional Boolean-to-CNF Translation
	2.3 Translation from Propositional Logic to CNF by Merging ITE-Trees and Other Gate Groups

	3. Encoding the Unobservability of Logic Blocks
	3.1 Encoding Local Unobservability of Logic Blocks by Merging Them with Adjacent Gates
	3.2 Using Unobservability Variables to Encode the Local and Global Unobservability of Logic Blocks

	4. Exploiting the Polarity of Logic Blocks to Reduce the Number of Their Clauses
	5. Comparison of Translation Strategies on EUFM Formulas from Correct Processors
	6. Comparison of Translation Strategies on EUFM Formulas from Buggy Processors
	7. Related Work
	8. Conclusions
	[1] W. Ackermann, Solvable Cases of the Decision Problem, North-Holland, Amsterdam, 1954.
	[2] G. Audemard, P. Bertoli, A. Cimatti, A. Korniowicz, and R. Sebastiani, “A SAT Based Approach ...
	[3] C. Barrett, D. Dill, and A. Stump, “Checking Satisfiability of First-Order Formulas by Increm...
	[4] C. Barrett, and S. Berezin, “CVC Lite: A New Implementation of the Cooperating Validity Check...
	[5] R.E. Bryant, S. German, and M.N. Velev, “Processor Verification Using Efficient Reductions of...
	[6] R.E. Bryant, S.K. Lahiri, and S.A. Seshia, “Deciding CLU Logic Formulas via Boolean and Pseud...
	[7] R.E. Bryant, and M.N. Velev, “Boolean Satisfiability with Transitivity Constraints,” ACM Tran...
	[8] J.R. Burch, and D.L. Dill, “Automated Verification of Pipelined Microprocessor Control,” Comp...
	[9] L. de Moura, H. Rueß, and M. Sorea, “Lazy Theorem Proving for Bounded Model Checking over Inf...
	[10] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD Based Procedures for a Theory of E...
	[11] E. Goldberg, and Y. Novikov, “BerkMin: A Fast and Robust Sat-Solver,” Design, Automation, an...
	[12] R.B. Jones, D.L. Dill, and J.R. Burch, “Efficient Validity Checking for Processor Verificati...
	[13] S. Lahiri, C. Pixley, and K. Albin, “Experience with Term Level Modeling and Verification of...
	[14] S.K. Lahiri, S.A. Seshia, and R.E. Bryant, “Modeling and Verification of Out-of-Order Microp...
	[15] S.K. Lahiri, and R.E. Bryant, “Deductive Verification of Advanced Out-of-Order Microprocesso...
	[16] D. Le Berre, and L. Simon, “Results from the SAT’04 Solver Competition,” Theory and Applicat...
	[17] S. Malik, A.R. Wang, R.K. Brayton, and A. Sangiovani-Vincentelli, “Logic Verification Using ...
	[18] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering an Effici...
	[19] D.A. Plaisted, and S. Greenbaum, “A Structure Preserving Clause Form Translation,” Journal o...
	[20] A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel, “The Small Model Property: How Small Can I...
	[21] L. Ryan, Siege SAT Solver. http://www.cs.sfu.ca/~loryan/personal/
	[22] L. Ryan, “Efficient Algorithms for Clause-Learning SAT Solvers,” M.S. Thesis, Simon Fraser U...
	[23] S.A. Seshia, S.K. Lahiri, and R.E. Bryant, “A Hybrid SAT-Based Decision Procedure for Separa...
	[24] S. Subbarayan, and D.K. Pradhan, “NiVER: Non Increasing Variable Elimination Resolution for ...
	[25] G.S. Tseitin, “On the Complexity of Derivation in Propositional Calculus,” in Studies in Con...
	[26] O. Tveretina, and H. Zantema, “A Proof System and a Decision Procedure for Equality Logic,” ...
	[27] M.N. Velev, and R.E. Bryant, “Exploiting Positive Equality and Partial Non-Consistency in th...
	[28] M.N. Velev, and R.E. Bryant, “Superscalar Processor Verification Using Efficient Reductions ...
	[29] M.N. Velev, and R.E. Bryant, “Formal Verification of Superscalar Microprocessors with Multic...
	[30] M.N. Velev, “Automatic Abstraction of Memories in the Formal Verification of Superscalar Mic...
	[31] M.N. Velev, and R.E. Bryant, “TLSim and EVC: A Term-Level Symbolic Simulator and an Efficien...
	[32] M.N. Velev, and R.E. Bryant, “Effective Use of Boolean Satisfiability Procedures in the Form...
	[33] M.N. Velev, “Automatic Abstraction of Equations in a Logic of Equality,” Automated Reasoning...
	[34] M.N. Velev, “Efficient Translation of Boolean Formulas to CNF in Formal Verification of Micr...
	[35] M.N. Velev, “Exploiting Signal Unobservability for Efficient Translation to CNF in Formal Ve...
	[36] M.N. Velev, “Encoding Global Unobservability for Efficient Translation to SAT,” 7th Internat...
	[37] M.N. Velev, “Comparison of Schemes for Encoding Unobservability in Translation to SAT,” subm...
	[38] H. Zantema, and J.F. Groote, “Transforming Equality Logic to Propositional Logic,” 4th Inter...
	Table 1. Comparison of the three g-equation encodings on unsatisfiable Boolean formulas from corr...
	Table 2. Comparison of translation strategies on satisfiable Boolean formulas from 10 buggy varia...

