
216 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 2, MAY 2005

Integrating Formal Verification into an Advanced
Computer Architecture Course

Miroslav N. Velev, Member, IEEE

Abstract—This paper presents a sequence of three projects on
design and formal verification of pipelined and superscalar pro-
cessors: 1) a single-issue, five-stage DLX (an academic processor
used widely for teaching pipelined execution and defined by Hen-
nessy and Patterson in the first edition of their graduate textbook);
2) an extension of the DLX with exceptions and branch prediction;
and 3) a dual-issue superscalar DLX. The projects were integrated
into two editions of an advanced computer architecture course that
was offered at the Georgia Institute of Technology, Atlanta, in the
summer and fall 2002 and was taught to 67 students (25 of whom
were undergraduates) in a way that required them to have no prior
knowledge of formal methods. Preparatory homework problems
included an exercise on design and formal verification of a stag-
gered Arithmetic Logic Unit (ALU), pipelined in the style of the
integer ALUs in the Intel Pentium 4. The processors were designed
and formally verified with a tool flow that was used to formally
verify the M CORE processor at Motorola and detected bugs.

Index Terms—Abstraction, Boolean satisfiability (SAT), com-
puter architecture, formal verification of microprocessors,
high-level microprocessor design, logic of Equality with Unin-
terpreted Functions and Memories (EUFM), Positive Equality,
teaching of formal methods.

I. INTRODUCTION

VERIFICATION is increasingly becoming the bottleneck
in the design of state-of-the-art computer systems, with

up to 70% of the engineering effort spent on verifying a new
product [1]. The higher complexity of new microprocessors
leads to more errors—Bentley [2] reports a 350% increase
in the number of bugs detected in the Intel Pentium 4 [3],
compared with those detected in the previous architecture,
the Intel Pentium Pro. Formal verification is the mathematical
proof of correctness of hardware or software for all execution
scenarios, as opposed to just a set of test sequences. Although
industry is gradually accepting the use of formal methods,
previous formal techniques did not scale for realistic processors
or required extensive manual work by experts—factors that
made formal methods impractical to integrate in computer
architecture courses.

Traditionally, the principles of pipelined and superscalar ex-
ecution have been taught with the following three approaches:

1) trace-driven simulation with existing tools [4]–[9];
2) implementation of a trace-driven simulator in a program-

ming language such as C, often by filling only missing
sections in code provided by instructors [10]–[12];

Manuscript received March 30, 2003; revised January 24, 2004.
The author is with the Department of Electrical and Computer Engi-

neering, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
mvelev@ece.cmu.edu).

Digital Object Identifier 10.1109/TE.2004.832880

3) implementation of a processor using a commercial hard-
ware description language (HDL), such as Verilog [13]
or VHDL [14] as reported in [15]–[17], or an academic
HDL [11], [18], and then simulating the design with ex-
isting tools or with a hardware emulation system based on
field-programmable gate arrays (FPGAs) [12], [19]–[21].

In the second and third approaches, the implementations are ver-
ified with test sequences provided by the instructors or defined
by students. However, such testing is time consuming and does
not guarantee correctness—with bugs remaining undetected for
years even in the skeleton code provided by the instructors [10].

In spite of the role that formal verification will play when de-
signing computer systems in the future, only a few universities
offer related courses [22]. There are many reports on the inte-
gration of formal methods into software engineering curricula
[23]–[26]. However, the author knows of only one computer ar-
chitecture course [10] that was offered at Carnegie Mellon Uni-
versity, Pittsburgh, PA, in a version where the students had to
model-check [27] a cache coherence protocol.

This paper advocates the integration of formal verification
into existing computer architecture courses as a way to educate
students with knowledge of formal methods and with deeper un-
derstanding of the principles of pipelined, speculative, and su-
perscalar execution. Then, when working in industry, the stu-
dents will be more productive and capable of delivering cor-
rect new processors under aggressive time-to-market schedules.
This paper presents the experience from such an integration of
formal verification into an existing computer architecture course
[28], [29], taught to both undergraduate and graduate students
with no prior knowledge of formal methods. The existing course
was extended with several lectures on formal verification, with
related homework problems, and with a sequence of the fol-
lowing three projects on design and formal verification of:

1) a single-issue pipelined DLX processor [30];
2) a version with exceptions and branch prediction;
3) a dual-issue superscalar DLX.

The last project was motivated by commercial dual-issue super-
scalar processors, such as the Intel Pentium, the Alpha 21064,
the IDT RISCore5000, the PowerPC 440 Core, the Motorola
MC 68060, the Motorola MPC 8560, and the MIPS III used in
the Emotion Engine chip of the Sony Playstation 2 [30].

The integration of formal verification into an existing com-
puter architecture course was made possible by a tool flow [31]
that was used to formally verify a new design of the pipelined
M CORE processor at Motorola and detected bugs [32]. The
pedagogical power of this tool flow is a result of the following:

1) the immediate feedback given to students—it takes 0.1 s
to formally verify a single-issue pipelined DLX processor

0018-9359/$20.00 © 2005 IEEE

VELEV: INTEGRATING FORMAL VERIFICATION INTO AN ADVANCED COMPUTER ARCHITECTURE COURSE 217

[30], 0.2 s to formally verify an extension with exceptions
and branch prediction, and 15 s to formally verify a dual-
issue superscalar DLX, if the Boolean satisfiability (SAT)
solver siege_v4 [33] is used;

2) the full detection of bugs, when a processor is formally
verified;

3) the resulting objective grading—based on correctness that
is proved mathematically, as opposed to being determined
by passing test sequences.

Every time the design process was shifted to a higher level
of abstraction, the effect was an increase in productivity. When
microprocessor designers moved from the transistor level to the
gate level, and later to the register-transfer level, relying on
electronic design automation (EDA) tools to bridge the gap be-
tween these levels, such an effect took place. Similarly, when
programmers adopted high-level programming languages, such
as FORTRAN and C, relying on compilers for translation to
assembly code, the same effect took place. The abstract hard-
ware description language (AbsHDL) [31] that was used in the
projects differs from commercial HDLs, such as Verilog and
VHDL, in that the bit widths of word-level values are not speci-
fied, and neither are the implementations of functional units and
memories. These characteristics of AbsHDL allow the micro-
processor designers to focus entirely on partitioning the func-
tionality among pipeline stages and on defining the processor
control logic. Most importantly, this high-level definition of pro-
cessors, coupled with certain modeling restrictions (Section III),
allows the efficient formal verification of the pipelined designs.
The assumption is that the bit-level descriptions of functional
units and memories will be formally verified separately from
the rest of the circuit and will be added by EDA tools later when
an AbsHDL processor is translated automatically to a bit-level
synthesizable description, e.g., in Verilog or VHDL.

The rest of the paper is organized as follows. Section II sum-
marizes related work. Section III presents the formal verifica-
tion background and the tool flow. Section IV describes the
three projects, and Section V discusses their integration into
an existing advanced computer architecture course. Section VI
presents results, and Section VII concludes the paper.

II. RELATED WORK

Traditionally, the principles of pipelined and superscalar
execution have been taught by using trace-driven simulation
[4]–[12] or FPGA-based hardware emulation [12], [19]–[21].
Surveys of simulation resources are presented in [34] and [35].
However, simulator bugs and modeling inaccuracies can lead to
significant errors in performance measurements [36]–[39] and
therefore may result in wrong design decisions. To avoid bugs,
Weaver et al. [8] extended their trace-driven simulator with a
dynamic checker, which is similar to the checker processor in
the Dynamic Implementation Verification Architecture [40] and
is used to compare the superscalar simulator results with those
produced by a nonpipelined simulator. Although such a checker
can detect bugs triggered by the benchmarks simulated so far,
it does not guarantee correctness; thus, bugs may still remain
to be activated by other benchmarks. The lack of guarantee for
correctness diminishes the pedagogical power of simulation

when teaching the principles of pipelined, speculative, and
superscalar execution.

Directions for integrating formal methods into software en-
gineering courses are outlined by Almstrum et al. [41] and by
Wing [42]. There are many reports from integrating formal ver-
ification into existing software engineering curricula [23]–[26].
A list of formal verification courses offered at various universi-
ties can be found at the Formal Methods Educational site [22].
However, none of those courses integrates formal methods
into an existing computer architecture course. The only such
course [10] that the author knows of was taught at Carnegie
Mellon University in a version that included a project on model
checking [27] a snoopy cache coherence protocol. In a different
school, the instructor [43] used a formal verification tool to
illustrate how to check properties of a cache coherence pro-
tocol when teaching computer architecture but did not assign
projects.

Another course where the students designed dual-issue super-
scalar processors, using VHDL, is reported by Hamblen et al.
[21]. However, dual-issue processors were attempted by only
two of the nine groups, and one of them produced a design that
passed the test sequences. Of the other seven groups that im-
plemented single-issue pipelined processors, four produced de-
signs that passed the test sequences.

Functional verification was taught by Ozguner et al. [1], but
the students did not use formal verification tools. Van Campen-
hout et al. [17] studied student bugs made in Verilog designs
of five-stage DLX models with branch prediction. When de-
signing the DLX processors, those students did not describe the
register files and the Arithmetic Logic Units (ALUs)—similar
to the work presented in this paper—but used library modules.
However, their processors were described at a lower level of
abstraction and were of lower complexity. The models did not
implement exceptions in addition to branch prediction or have
dual-issue superscalar execution. Furthermore, the processors
were not formally verified. Van Campenhout et al. report that
their testing method detected 94% of the student errors.

III. FORMAL VERIFICATION BACKGROUND

In the projects, the processors were implemented in AbsHDL
[31] that has constructs for latches, memories, uninterpreted
functions [44] (used to abstract functional units that produce
word-level results), uninterpreted predicates (UPs) [44] (used to
abstract functional units that produce bit-level results), equality
comparators, multiplexors, and basic logic gates—AND, OR, and
NOT. Signals are defined as one of two types: bit-level signals
that are used to model completely the control of a processor and
term-level signals that are used to abstract word-level values re-
gardless of their actual number of bits.

The formal verification tool flow consists of: 1) the term-level
symbolic simulator (TLSim) [31]; 2) the decision procedure
equality validity checker (EVC) [31]; and 3) any efficient SAT
solver. TLSim takes an implementation and a specification pro-
cessor, defined in AbsHDL, and a simulation-command file
indicating how to simulate the two processors and when to
compare their architectural state elements. In symbolic simu-
lation, the initial state of memories and latches is represented

218 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 2, MAY 2005

with new variables—Boolean variables for the initial state
of bit-level signals and term variables for the initial state of
term-level signals—introduced automatically by TLSim, thus
allowing one to prove correctness for any initial state. TLSim
propagates these variables through the processor logic, building
symbolic expressions for the values of logic gates, uninter-
preted functions, UPs, memories, and latches. The symbolic
expressions are defined in the logic of Equality with Unin-
terpreted Functions and Memories (EUFM) [44], which gives
mathematical representation for the AbsHDL constructs during
symbolic simulation.

In order to compare the architectural state (consisting of
all user-visible state elements, such as the PC, register file,
data memory, exception-status flags, and Exception-PC) of a
pipelined implementation with the architectural state of the
specification, one must use an abstraction function that maps an
implementation state (containing pipeline latches in addition to
the architectural state) to an equivalent state of the architectural
state elements by completing any partially executed instruc-
tions. Then, the symbolic expressions for the architectural state
elements in the implementation can be directly compared for
equality with the symbolic expressions for the architectural
state elements in the specification. (The specification contains
only architectural state elements.) In general, computing an
abstraction function is a nontrivial task because the imple-
mentation contains partially executed symbolic instructions,
each representing any of the instructions in the instruction
set architecture (ISA) and possibly creating data and control
dependencies for all subsequent instructions. In the first at-
tempts to formally verify pipelined processors during the late
1980s and early 1990s, the verification engineers defined the
abstraction function manually—a time-consuming task whose
complexity increases with that of the pipelined implementation.
A breakthrough was made with Burch and Dill’s idea [44] to
compute the abstraction function automatically by flushing the
pipelined implementation—feeding it with bubbles (i.e., com-
binations of control signals that do not modify any architectural
state element) until all partially executed instructions that are
initially in the pipeline are completed, and their results are re-
flected on the architectural state elements. To flush a pipelined
implementation, one has to incorporate a flush signal that, if
asserted to true (i.e., 1), will turn any newly fetched instructions
into bubbles and will not allow the PC to be incremented by
the fetch mechanism to point to the sequential instruction but
will allow instructions that are already in the pipeline to com-
plete and update the PC and other architectural state elements.
Incorporating such a flush signal in the implementation can be
viewed as design for formal verification.

In the projects, symbolic simulation with TLSim was done
to prove the safety property of a pipelined implementation pro-
cessor. That one step of the implementation, starting from an
arbitrary initial state, corresponds to between 0 and steps of
the specification, where is the issue width of the implemen-
tation. To build a formula for this correctness condition, the
implementation is simulated symbolically for one step from an
arbitrary initial state and then flushed. The resulting symbolic
expressions for the architectural state elements are compared
for equality with the symbolic expressions for the same archi-

tectural state elements after first flushing the implementation
and then using that architectural state to simulate symbolically
the specification for 0 to steps. If a processor is correct for
one step from an arbitrary initial state, then by induction, the
processor will be correct for any number of steps (see [45]
for a survey of correctness criteria).

The syntax of EUFM includes terms and formulas. Terms
abstract word-level values, such as data, register identifiers,
memory addresses, and the entire states of memories, and are
used to model the data path of a processor. Formulas represent
Boolean signals and are used to model the control path of a
processor and to express the correctness condition. A term can
be an uninterpreted function (UF) applied on a list of argument
terms; a term variable (which can be viewed as a UF with
no arguments); or an ITE (“if-then-else”) operator selecting
between two argument terms based on a controlling formula,
such that ITE(formula, term , term) will evaluate to term
when formula = true and to term when formula = false, i.e.,
an ITE operator is a mathematical representation for a multi-
plexor. A formula can be a UP applied on a list of argument
terms, a propositional variable (a UP with no arguments), or an
equality comparison of two terms. Formulas can be negated,
conjuncted, or disjuncted. An ITE operator of the form ITE(,

,), selecting between two formulas and based on a
controlling formula , is equivalent to . Both
terms and formulas will be referred to as expressions.

UFs and UPs are used to abstract the implementation details
of combinational functional units by replacing them with “black
boxes” that satisfy no particular properties other than that of
functional consistency—that equal input expressions produce
equal output values. Then, whether the original functional unit
is an adder or a multiplier, etc., no longer matters as long as the
same UF (or UP) is used to replace it in both the implementa-
tion and the specification processor. In this way, a more general
problem will be proved—that the processor is correct for any
functionally consistent implementation of its functional units.
However, that more general problem is much easier to prove.

The syntax for terms can be extended to model memories by
means of the interpreted functions read and write. Function read
takes two argument terms serving as memory state and address,
respectively, and returns a term for the data at that address in
the given memory. Function write takes three argument terms
serving as memory state, address, and data and returns a term
for the new memory state. Functions read and write satisfy the
forwarding property of the memory semantics: read(write(mem,
waddr, wdata), raddr) is equivalent to ITE((raddr = waddr),
wdata, read(mem, raddr)), i.e., if this rule is applied recursively,
a read returns the data most recently written to an equal address
or otherwise the initial state of the memory for that address.

The term-level symbolic simulator TLSim has commands to
compare for equality the symbolic expressions for architectural
state elements in the implementation and the specification, ac-
cording to the safety property, and build a resulting EUFM for-
mula. That formula is then input into the decision procedure
EVC [31] that translates the formula to an equivalent Boolean
formula, which has to be a tautology for the implementation to
be correct. The Boolean formula can be evaluated with any SAT
procedure. The SAT solver Chaff [46] was used in the projects;

VELEV: INTEGRATING FORMAL VERIFICATION INTO AN ADVANCED COMPUTER ARCHITECTURE COURSE 219

however, the recently developed SAT solver siege_v4 [33] is sig-
nificantly faster. The reader is referred to [47] for an overview
of recent advances in SAT solvers.

The efficiency of EVC is a result of the property of Positive
Equality [48]. After imposing some simple restrictions on the
style for describing high-level microprocessors, one gets EUFM
correctness formulas where most of the terms appear only in
positive (not negated) equality comparisons or as arguments to
UFs and UPs. This structure of the correctness formulas allows
one to treat such term variables that are syntactically distinct
as not equal, thus significantly simplifying the EUFM formula,
reducing the solution space and achieving orders of magnitude
speedup, while still performing formal verification. The speedup
is at least five orders of magnitude for a dual-issue superscalar
DLX processor with exceptions, multicycle functional units,
and branch prediction [49].

To exploit Positive Equality, a microprocessor designer has
to follow simple restrictions [49] when defining the high-level
microprocessors. First, equality comparators between data
operands should be abstracted with a new UP in both the
implementation and the specification. Second, the data memory
should be abstracted with a finite-state machine (FSM) model
of a memory so that the interpreted functions read and write
(satisfying the forwarding property of the memory seman-
tics) are replaced by new uninterpreted functions and ,
respectively, that take the same arguments but do not satisfy
the forwarding property. Then one would only prove that
the implementation and the specification perform the same
sequence of memory operations with the same argument terms,
but that proof is sufficient for processors that do not reorder
the memory operations, as in the case of the models that are
formally verified in the projects.

IV. THREE PROJECTS ON DESIGN AND FORMAL VERIFICATION

OF PIPELINED PROCESSORS

The projects went through two iterations—one in the summer
[28] and another in the fall [29] of 2002. During the summer,
the students were prepared for the projects with two lectures on
formal verification. Analysis of frequent student bugs and ques-
tions from the summer led to the addition of short sessions on
formal verification concepts to more lectures in the fall (Sec-
tion V). Preparatory homework exercises were also assigned. As
a result, the students asked fewer questions when implementing
the projects in the fall, although the most frequent bugs (see [50]
for detailed descriptions of the bugs) were similar to those in the
summer. The fall editions of the projects were slightly modified
by changing the semantics of some of the instruction types or
by requiring the students to distribute the functional units dif-
ferently across the two execution pipelines of the superscalar
processor in Project 3. These modifications made it difficult for
the students to reuse designs from the summer and led to bugs
specific to the fall edition of the projects.

To divide and conquer the design complexity, and to allow
the students to better understand the interaction between var-
ious features in a pipelined processor, each of the projects was
assigned as a sequence of steps. A step included the extension

of a pipelined processor from a previous step or from an ear-
lier project with a new instruction type or a new mechanism.
The students were required to complete each step before going
on—the pedagogical motivation was to simplify the debugging
and to ensure a clear understanding of how the various instruc-
tion types and control mechanisms interact. The correct seman-
tics of all the functionality implemented up to and including
the new step was defined with a nonpipelined specification pro-
cessor that was given to the students. They were also given the
TLSim simulation-command files for all steps of Project 1 but
were asked to create their own simulation-command files for
Projects 2 and 3. The pedagogical motivation was to reduce the
number of new concepts in Project 1, where the students had
to master the syntax of AbsHDL, the modeling techniques that
allow efficient formal verification of high-level microproces-
sors, and to design correctly a pipelined processor with many
control mechanisms. Furthermore, only small changes were re-
quired to convert the simulation-command file from the last step
of Project 1 to simulation-command files for Projects 2 and 3,
again allowing the students to focus on the correct design of new
features in those projects. For a more careful understanding of
the various control mechanisms in a processor, and for a more
permanent effect from the projects, the students were required
to describe the processors completely, as opposed to just filling
in the missing parts in provided skeleton code. The following
versions of the projects were assigned in the fall of 2002.

A. Project 1: Design and Formal Verification of a Single-Issue
Pipelined DLX

Step 1) Implementation of register–register ALU in-
structions. The students were asked to extend a
three-stage ALU pipeline to a five-stage pipelined
processor that has the stages of the DLX: instruction
fetch (IF), instruction decode (ID), execute (EX),
memory (MEM), and write-back (WB). The MEM
stage was to be left empty; the register file was to be
placed in ID; and the ALU and the forwarding logic
were to be in EX.

Step 2) Implementation of register–immediate ALU instruc-
tions. The students had to integrate a multiplexor to
select an immediate data value as ALU input.

Step 3) Implementation of store instructions. The FSM
model for abstraction of the data memory (Sec-
tion III) was to be added to the MEM stage, left
empty so far.

Step 4) Implementation of load instructions. The students
were asked to implement the load interlock in ID.
They were given the hint that an optimized load in-
terlock should stall only when a dependent instruc-
tion’s source operand was actually used.

Step 5) Implementation of (unconditional) jump instruc-
tions. The students were given the hint that during
flushing, the PC should be updated only by instruc-
tions that were already in the pipeline since the
purpose of flushing was to complete such instruc-
tions without fetching new ones. This mechanism
for updating the PC was viewed as design for formal
verification.

220 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 2, MAY 2005

Step 6) Implementation of conditional branch instructions.
The students were required to update the PC when
a branch was in MEM. The processor was to be bi-
ased for branch-not-taken, i.e., to continue fetching
instructions that sequentially follow a branch and
cancel them if the branch was taken or allow them
to complete otherwise.

B. Project 2: Design and Formal Verification of a DLX With
Exceptions and Branch Prediction

Step 1) Implementation of ALU exceptions. The goal was to
extend the processor from Step 6 of Project 1 with
ALU exceptions. The new specification had two ad-
ditional architectural state elements—an Exception
PC (EPC) that held the address of the last instruction
that raised an ALU exception and a flag IsException
that indicated whether an ALU exception was ac-
tually raised, i.e., whether the EPC contained valid
information. A UP was used to check for ALU ex-
ceptions by having had the same inputs as the ALU
and having produced a Boolean signal that indicated
whether an exception was raised [51].

Step 2) Implementation of a return-from-exception instruc-
tion. This instruction updated the PC with the value
of the EPC if flag IsException was set and then
cleared that flag.

Step 3) Implementation of branch prediction. Since branch
prediction was a mechanism that enhanced the per-
formance of an implementation processor only, the
specification processor was the same as for Step 2
of this project. The branch predictor was abstracted
with an FSM [51] that produced an arbitrary term
for the predicted target and an arbitrary Boolean
signal for the predicted direction. If a processor is
correct for an arbitrary prediction of a newly fetched
branch or jump, the processor will be correct for any
actual implementation of the branch predictor. The
students were given the hint that since the purpose
of flushing was to complete instructions that were
already in the pipeline, the PC should not be up-
dated speculatively by newly fetched instructions
during flushing but should still be updated by the
logic for correcting branch and jump mispredic-
tions. This mechanism for PC updating was viewed
as design for formal verification.

C. Project 3: Design and Formal Verification of a Dual-Issue
Superscalar DLX

Step 1) Implementation of a base dual-issue DLX. The goal
was to extend the processor from Step 4 of Project
1 to a dual-issue superscalar version where the first
pipeline would execute all instruction types, and the
second pipeline would execute only register–reg-
ister and register–immediate ALU instructions. The
processor was to have in-order issue, in-order ex-
ecution, and in-order completion. The issue logic
was to be based on a shift register.

Step 2) Adding jump and branch instructions to the second
pipeline. The students were given the hint that the
tricky part was to cancel all instructions that follow
a jump or a taken branch. Furthermore, the instruc-
tions had to be canceled for all their transitions.

Project 3 was defined as an extension of Project 1 in order
to introduce one difficulty at a time—superscalar execution.
Thus, the combination with exceptions and branch prediction
was avoided.

V. INTEGRATION OF THE THREE PROJECTS INTO AN ADVANCED

COMPUTER ARCHITECTURE COURSE

The three projects were integrated into an advanced com-
puter architecture course that was listed as both an undergrad-
uate course (ECE 4100) and a graduate course (ECE 6100). The
students were required to have taken an introductory computer
architecture course; no additional prerequisites were included
for a formal verification background. The course was based on
the graduate textbook by Hennessy and Patterson [30]. This dis-
cussion is about the fall 2002 version of the course [29]. The
slides developed at the University of California, Berkeley [52]
were extended with two lectures on formal verification of pro-
cessors and several short topics added to existing lectures.

To prepare the students for the lectures on formal verifica-
tion, several concepts were introduced in 10–15-min sessions
in earlier lectures. The first such session defined symbolic
simulation and the ITE operator. The second presented the
interpreted functions read and write, used for abstracting mem-
ories, and the forwarding property of the memory semantics
that these functions satisfy. The third illustrated the syntax
of AbsHDL with an example three-stage pipelined processor
and its nonpipelined specification. The two lectures on formal
verification of processors followed next (lectures 6 and 7 [29])
and introduced the logic of EUFM, the inductive correctness
criterion for the safety property, the formal verification tool
flow, the property of Positive Equality, and the modeling re-
strictions necessary to exploit that property. Another short
session was included in the lecture on branch prediction in
order to discuss the abstraction of a branch predictor with an
FSM and the integration of branch prediction into a pipelined
processor, a prelude to Project 2. Finally, in the lecture on
superscalar execution, special emphasis was made on super-
scalar issue logic that is based on a shift register, such as the
one in Project 3.

Several homework exercises were introduced to prepare the
students for the three projects. Homework 1 had a problem on
symbolic simulation. The students had to manually form sym-
bolic expressions for small circuits (consisting of two to three
levels of logic gates and a latch), to prove that two such cir-
cuits are equivalent, and to simplify symbolic expressions by
accounting for the interaction between the symbolic expression
for the enable signal of a latch and the symbolic expressions for
controlling signals of multiplexors that drive the data input of
the latch. (The last part of this exercise was motivated by stu-
dent bugs from the projects in summer 2002 [28].) Homework 2
had a problem on defining the controlling signals for the multi-
plexors in tree-like forwarding logic. Homework 3 had two rel-
evant problems. The first problem was to implement the issue

VELEV: INTEGRATING FORMAL VERIFICATION INTO AN ADVANCED COMPUTER ARCHITECTURE COURSE 221

TABLE I
STATISTICS FROM THE THREE PROJECTS

logic of a three-wide superscalar processor with out-of-order ex-
ecution and out-of-order retirement, capable of executing only
ALU and load instructions. The issue logic had to be based on a
shift register (to prepare the students for Project 3), so that unis-
sued instructions are shifted to the beginning of the register, and
emptied slots are filled with newly fetched instructions.

The second relevant problem in Homework 3 was to design
and formally verify a four-stage pipelined ALU, implemented
in the style of the staggered integer ALUs in the Intel Pentium
4 [3]. The ALU operations are such that the lower half of a re-
sult depends on only the lower halves of the operands, while
the upper half of a result depends on only the upper halves of
the operands and the carry-out from computing the lower half
of the same result. Based on these input dependencies, one can
compute the two halves of a result in different pipeline stages,
producing each half with an ALU that is half of the original
width and thus can be clocked twice as fast. The benefit from
staggered pipelining is that a dependent computation can start
execution on each new cycle (i.e., half of the original cycle later,
as opposed to one original cycle later), thus allowing sequen-
tial chains of dependent computations to be completed twice as
fast. A similar exercise can be found in the textbook by Shen
and Lipasti [53], except that the students are not given a way to
formally verify their implementations of a staggered ALU.

Another homework problem was assigned in summer 2002
[28]. The students were given an incorrect version of the
pipelined DLX from Project 1 and were told that the processor
has five bugs. The students had to inspect the code, identify the
bugs, and explain each of them.

In fall 2002, Project 1 had to be completed in two weeks,
while Projects 2 and 3 were assigned for three weeks each. (In
summer 2002, the project durations were slightly shorter, since
summer terms are 11 weeks long, compared with 15 weeks for
regular terms at the Georgia Institute of Technology, Atlanta.)
The students could work alone or in groups of up to three on
Projects 1 and 2, and were required to work in groups of three
on Project 3 because of its complexity.

VI. RESULTS

Table I summarizes statistics from the three projects. The re-
ported formal verification times were measured on a Dell Opti-
Plex GX260 having a 3.06-GHz Intel Pentium 4 processor with
a 512-KB on-chip L2 cache, 2 GB of memory, and running

Red Hat Linux 9. The memory required by the tool flow for
these projects is less than 256 MB. (If the tool flow runs out of
memory, it will exit and print an error message.) The formal ver-
ification time for Project 3 can be reduced to 0.5 s if the students
are taught how to compute the abstraction function by controlled
flushing [54]; that concept was not covered. The total numbers
of different bugs do not include AbsHDL syntax errors; TLSim
simulates only if a processor is free of syntax errors.

The reader is referred to [50] for detailed descriptions of all
the bugs in the projects. Students who took less time to finish
the projects consistently had the highest grades on the exams.

VII. CONCLUSION

The experience presented in this paper indicates it is pos-
sible to integrate formal verification into an existing advanced
computer architecture course, taught to both undergraduate and
graduate students with no prior knowledge of formal methods.
An efficient tool flow allowed students to design pipelined and
superscalar processors in a sequence of three projects and to for-
mally verify the designs in a few seconds. The formal verifica-
tion of the above processors takes 0.1, 0.2, and 15 s, respectively.
A related homework problem was to design and formally verify
a staggered ALU, pipelined in the style of the integer ALUs
in the Intel Pentium 4. Integration of formal verification into
computer architecture courses will produce future micropro-
cessor designers with a deeper understanding of the principles
of pipelined, speculative, and superscalar execution—designers
who are thus more productive and capable of delivering correct
new processors under aggressive time-to-market schedules.

REFERENCES

[1] F. Ozguner, D. Marhefka, J. DeGroat, B. Wile, J. Stofer, and L. Han-
rahan, “Teaching future verification engineers: The forgotten side of
logic design,” in Proc. 38th DAC Conf., Jun. 2001, pp. 253–255.

[2] B. Bentley, “Validating the Intel Pentium 4 microprocessor,” in Proc.
38th Design Automation Conf. (DAC ’01), Jun. 2001, pp. 244–248.

[3] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and
P. Roussel, “The microarchitecture of the Pentium 4 processor,” Intel
Technology J., 1st Quarter 2001.

[4] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0,”
University of Wisconsin-Madison, Computer Sciences Tech. Rep. 1342,
Jun. 1997.

[5] T. Diep, “VMW: A visualization-based microarchitecture workbench,”
Ph.D. dissertation, Dept. of Electrical and Computer Engineering,
Carnegie Mellon Univ., Pittsburgh, PA, Jun. 1995.

222 IEEE TRANSACTIONS ON EDUCATION, VOL. 48, NO. 2, MAY 2005

[6] DLXview [Online]. Available: http://yara.ecn.purdue.edu/~tea-
maaa/dlxview/

[7] SPIM: A MIPS R2000/R3000 Simulator, J. Larus. [Online]. Available:
http://www.cs.wisc.edu/~larus/spim.html

[8] C. T. Weaver, E. Larson, and T. Austin, “Effective support of simulation
in computer architecture instruction,” in Proc. Workshop Computer Ar-
chitecture Education, May 2002, pp. 48–55.

[9] WinDLX [Online]. Available: ftp://ftp.mkp.com/pub/dlx/
[10] R. E. Bryant and T. C. Mowry. (1998, Fall) CS 740: Basic Com-

puter Systems. Carnegie Mellon Univ., Pittsburgh, PA. [Online].
Available: http://www-2.cs.cmu.edu/afs/cs.cmu.edu/academic/class/
15 740-f98/www/home.html

[11] M. Brorsson, “MipsIt—A simulation and development environment
using animation for computer architecture education,” in Proc. Work-
shop Computer Architecture Education, May 2002, pp. 65–72.

[12] T. Tateoka, M. Suzuki, K. Kono, Y. Maeda, and K. Abe, “An integrated
laboratory for computer architecture and networking,” in Proc. Work-
shop Computer Architecture Education, May 2002, pp. 110–117.

[13] D. E. Thomas and P. R. Moorby, The Verilog Hardware Description Lan-
guage, 4th ed. Norwell, MA: Kluwer, 1998.

[14] P. J. Ashenden, The Student’s Guide to VHDL. San Francisco, CA:
Morgan Kaufmann, 1998.

[15] T. C. Huang, R. W. Melton, P. R. Bingham, C. O. Alford, and F. Ghan-
nadian, “The teaching of VHDL in computer architecture,” in Proc. Int.
Conf. Microelectronics Systems Education, Jul. 1997, pp. 133–134.

[16] SuperScalar DLX [Online]. Available: http://www.rs.e-technik.tudarm-
stadt.de/TUD/res/dlxdocu/SuperscalarDLX.html

[17] D. Van Campenhout, T. Mudge, and J. P. Hayes, “Collection and analysis
of microprocessor design errors,” IEEE Des. Test Comput., vol. 17, pp.
51–60, Oct.–Dec. 2000.

[18] E. Miller and J. Squire, “Esim: A structural design language and simu-
lator for computer architecture education,” in Proc. Workshop Computer
Architecture Education (WCAE’00), Jun. 2000, pp. 42–48.

[19] G. Brown and N. Vrana, “A computer architecture laboratory course
using programmable logic,” IEEE Trans. Educ., vol. 38, pp. 118–125,
May 1995.

[20] N. L. V. Calazans and F. G. Moraes, “Integrating the teaching of com-
puter organization and architecture with digital hardware design early in
undergraduate courses,” IEEE Trans. Educ., vol. 44, pp. 109–119, May
2001.

[21] J. O. Hamblen, H. L. Owen, S. Yalamanchili, and B. Dao, “An under-
graduate computer engineering rapid systems prototyping design labo-
ratory,” IEEE Trans. Educ., vol. 42, Feb. 1999.

[22] Formal methods educational site [Online]. Available: http://www.cs.in-
diana.edu/formal-methods-education/Courses/

[23] D. Garlan, “Integrating formal methods into a professional master of
software engineering program,” in Proc. 8th Z User Meeting (ZUM’94),
Jun. 1994, pp. 71–85.

[24] J. P. Gibson, “Formal requirements engineering: learning from the stu-
dents,” in Proc. Australian Software Engineering Conf., D. Grant, Ed.,
2000, pp. 171–181.

[25] A. E. K. Sobel, “Final results of incorporating an operational formal
method into a software engineering curriculum,” in Proc. 29th American
Society for Engineering Education (ASEE)/IEEE Frontiers in Education
Conf. (FIE’99), Nov. 1999, pp. 13a3-3–13a3-22.

[26] G. Tremblay, “An undergraduate course in formal methods: Description
is our business,” in Proc. SIGCSE Tech. Symp. Computer Science Edu-
cation, 1998, pp. 166–170.

[27] K. L. McMillan, Symbolic Model Checking. Norwell, MA: Kluwer,
1993.

[28] M. N. Velev. (2002, Summer) ECE 4100, Advanced Computer Archi-
tecture. Georgia Institute of Technology, Atlanta. [Online]. Available:
http://users.ece.gatech.edu/~mvelev/summer02/ece4100/

[29] , (2002, Fall) ECE 4100/6100, Advanced Computer Architec-
ture. Georgia Institute of Technology, Atlanta. [Online]. Available:
http://users.ece.gatech.edu/~mvelev/fall02/ece6100/

[30] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita-
tive Approach, 3rd ed. San Francisco, CA: Morgan Kaufmann, 2002.

[31] M. N. Velev and R. E. Bryant, “EVC: A validity checker for the logic of
equality with uninterpreted functions and memories, exploiting positive
equality and conservative transformations,” in Proc. Computer-Aided
Verification (CAV’01), Jul. 2001, pp. 235–240.

[32] S. Lahiri, C. Pixley, and K. Albin, “Experience with term level modeling
and verification of the M���CORE microprocessor core,” in Proc. High
Level Design, Validation and Test (HLDVT’01), Nov. 2001, pp. 109–114.

[33] L. Ryan. Siege SAT Solver V.4. [Online]. Available: http://
www.cs.sfu.ca/~loryan/personal/

[34] C. Yehezkel, W. Yurcik, and M. Pearson, “Teaching computer architec-
ture with a computer-aided learning environment: State-of-the-art sim-
ulators,” in Proc. Int. Conf. Simulation Multimedia in Engineering Edu-
cation (ICSEE’01), Jan. 2001.

[35] W. Yurcik, G. Wolffe, and M. Holliday, “A survey of simulators used
in computer organization/architecture courses,” in Proc. Summer Com-
puter Simulation Conf. (SCSC’01), Jul. 2001, pp. 524–529.

[36] B. Black and J. P. Shen, “Calibration of microprocessor performance
models,” IEEE Computer, vol. 31, pp. 59–65, May 1998.

[37] H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H. Lipasti, “Precise
and accurate processor simulation,” presented at the Workshop Com-
puter Architecture Evaluation Using Commercial Workloads, Feb. 2002.

[38] R. Desikan, D. Burger, and S. W. Keckler, “Measuring experimental
error in microprocessor simulation,” in Proc. 28th Int. Symp. Computer
Architecture (ISCA), Jul. 2001, pp. 266–277.

[39] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Hein-
rich, “Flash vs. (simulated) Flash: Closing the simulation loop,” in Proc.
9th Int. Symp. Architectural Support Programming Languages Oper-
ating Systems, Nov. 2000, pp. 49–58.

[40] T. Austin, “DIVA: A dynamic approach to microprocessor verification,”
J. Instruction-Level Parallelism (JILP), vol. 2, Jun. 2000.

[41] V. L. Almstrum, C. N. Dean, D. Goelman, T. B. Hilburn, and J. Smith.
(2000, Sept.) Support for Teaching Formal Methods: Rep. of ITiCSE
2000 Working Group on Formal Methods Education. [Online]. Avail-
able: http://www.cs.utexas.edu/users/csed/FM/work/final-v5-7.pdf

[42] J. M. Wing, “Weaving formal methods into the undergraduate computer
science curriculum,” in Proc. 8th Int. Conf. Algebraic Methodology Soft-
ware Technology (AMAST’00), May 2000, pp. 2–9.

[43] L. Ivanov, “Integrating formal verification into computer organization
and architecture courses,” J. Comput. Sci. in Colleges, vol. 17, no. 3, pp.
115–124, Feb. 2002.

[44] J. R. Burch and D. L. Dill, “Automated verification of pipelined micro-
processor control,” in Proc. Computer-Aided Verification (CAV’94), D.
L. Dill, Ed., Jun. 1994, pp. 68–80.

[45] M. D. Aagaard, B. Cook, N. A. Day, and R. B. Jones, “A framework for
superscalar microprocessor correctness statements,” Software Tools for
Technology Transfer (STTT), vol. 4, no. 3, pp. 298–312, May 2003.

[46] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Proc. 38th Design Au-
tomation Conf. (DAC’01), Jun. 2001, pp. 530–535.

[47] H. Kautz and B. Selman, “Ten challenges redux: Recent progress in
propositional reasoning and search,” in Proc. Principles Practice of Con-
straint Programming (CP’03), F. Rossi, Ed., Sep.–Oct. 2003, pp. 1–18.

[48] R. E. Bryant, S. German, and M. N. Velev, “Processor verification using
efficient reductions of the logic of uninterpreted functions to proposi-
tional logic,” ACM Trans. Computational Logic (TOCL), vol. 2, no. 1,
pp. 93–134, Jan. 2001.

[49] M. N. Velev and R. E. Bryant, “Introduction to formal verification of
pipelined processors by using abstraction and positive equality,” IEEE
Micro, 2005, submitted for publication.

[50] M. N. Velev, “Collection of high-level microprocessor bugs from formal
verification of pipelined and superscalar designs,” in Proc. Int. Test Conf.
(ITC’03), Oct. 2003, pp. 138–147.

[51] M. N. Velev and R. E. Bryant, “Formal verification of superscalar mi-
croprocessors with multicycle functional units, exceptions, and branch
prediction,” in Proc. 37th DAC, Jun. 2000, pp. 112–117.

[52] D. A. Patterson. CS 252, Graduate Computer Architecture. Univ. of
California at Berkeley. [Online]. Available: http://www.cs.berkeley.edu/
~pattrsn/252S01/index.html

[53] J. P. Shen and M. Lipasti, Modern Processor Design: Fundamentals of
Superscalar Processors. New York: McGraw-Hill, Jul. 2002.

[54] J. R. Burch, “Techniques for verifying superscalar microprocessors,” in
Proc. 33rd Design Automation Conf., Jun. 1996, pp. 552–557.

Miroslav N. Velev (S’98–M’05) received the B.S. and M.S. degrees in Elec-
trical Engineering and the B.S. degree in Economics from Yale University, New
Haven, CT, all in 1994, and the Ph.D. degree in Electrical and Computer Engi-
neering from Carnegie Mellon University, Pittsburgh, PA, in 2004.

From 2002 to 2003, he was an Instructor in the School of Electrical and Com-
puter Engineering at the Georgia Institute of Technology, Atlanta. He has devel-
oped a highly automatic tool flow and formal verification techniques that were
adopted by Motorola and used to detect bugs in the M���CORE processor. He
has also developed an Efficient Memory Model for the behavioral abstraction
of memory arrays in bit-level symbolic simulation; this work was adopted by
Intel, Motorola, and NEC in their internal tools, and by the Synopsys and Inno-
logic Systems in commercial tools. He has over 45 refereed publications.

	toc
	Integrating Formal Verification into an Advanced Computer Archit
	Miroslav N. Velev, Member, IEEE
	I. I NTRODUCTION
	II. R ELATED W ORK
	III. F ORMAL V ERIFICATION B ACKGROUND
	IV. T HREE P ROJECTS ON D ESIGN AND F ORMAL V ERIFICATION OF P I
	A. Project 1: Design and Formal Verification of a Single-Issue P
	B. Project 2: Design and Formal Verification of a DLX With Excep
	C. Project 3: Design and Formal Verification of a Dual-Issue Sup

	V. I NTEGRATION OF THE T HREE P ROJECTS I NTO AN A DVANCED C OMP

	TABLE€I S TATISTICS F ROM THE T HREE P ROJECTS
	VI. R ESULTS
	VII. C ONCLUSION
	F. Ozguner, D. Marhefka, J. DeGroat, B. Wile, J. Stofer, and L.
	B. Bentley, Validating the Intel Pentium 4 microprocessor, in Pr
	G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, a
	D. Burger and T. Austin, The SimpleScalar Tool Set, Version 2.0,
	T. Diep, VMW: A visualization-based microarchitecture workbench,

	DLXview [Online] . Available: http://yara.ecn.purdue.edu/~teamaa
	SPIM: A MIPS R2000/R3000 Simulator, J. Larus . [Online] . Availa
	C. T. Weaver, E. Larson, and T. Austin, Effective support of sim

	WinDLX [Online] . Available: ftp://ftp.mkp.com/pub/dlx/
	R. E. Bryant and T. C. Mowry . (1998, Fall) CS 740: Basic Comput
	M. Brorsson, MipsIt A simulation and development environment usi
	T. Tateoka, M. Suzuki, K. Kono, Y. Maeda, and K. Abe, An integra
	D. E. Thomas and P. R. Moorby, The Verilog Hardware Description
	P. J. Ashenden, The Student's Guide to VHDL . San Francisco, CA:
	T. C. Huang, R. W. Melton, P. R. Bingham, C. O. Alford, and F. G

	SuperScalar DLX [Online] . Available: http://www.rs.e-technik.tu
	D. Van Campenhout, T. Mudge, and J. P. Hayes, Collection and ana
	E. Miller and J. Squire, Esim: A structural design language and
	G. Brown and N. Vrana, A computer architecture laboratory course
	N. L. V. Calazans and F. G. Moraes, Integrating the teaching of
	J. O. Hamblen, H. L. Owen, S. Yalamanchili, and B. Dao, An under

	Formal methods educational site [Online] . Available: http://www
	D. Garlan, Integrating formal methods into a professional master
	J. P. Gibson, Formal requirements engineering: learning from the
	A. E. K. Sobel, Final results of incorporating an operational fo
	G. Tremblay, An undergraduate course in formal methods: Descript
	K. L. McMillan, Symbolic Model Checking . Norwell, MA: Kluwer, 1
	M. N. Velev . (2002, Summer) ECE 4100, Advanced Computer Archite
	J. L. Hennessy and D. A. Patterson, Computer Architecture: A Qua
	M. N. Velev and R. E. Bryant, EVC: A validity checker for the lo
	S. Lahiri, C. Pixley, and K. Albin, Experience with term level m
	L. Ryan . Siege SAT Solver V.4 . [Online] . Available: http:// w
	C. Yehezkel, W. Yurcik, and M. Pearson, Teaching computer archit
	W. Yurcik, G. Wolffe, and M. Holliday, A survey of simulators us
	B. Black and J. P. Shen, Calibration of microprocessor performan
	H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H. Lipasti, Prec
	R. Desikan, D. Burger, and S. W. Keckler, Measuring experimental
	J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. H
	T. Austin, DIVA: A dynamic approach to microprocessor verificati
	V. L. Almstrum, C. N. Dean, D. Goelman, T. B. Hilburn, and J. Sm
	J. M. Wing, Weaving formal methods into the undergraduate comput
	L. Ivanov, Integrating formal verification into computer organiz
	J. R. Burch and D. L. Dill, Automated verification of pipelined
	M. D. Aagaard, B. Cook, N. A. Day, and R. B. Jones, A framework
	M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
	H. Kautz and B. Selman, Ten challenges redux: Recent progress in
	R. E. Bryant, S. German, and M. N. Velev, Processor verification
	M. N. Velev and R. E. Bryant, Introduction to formal verificatio
	M. N. Velev, Collection of high-level microprocessor bugs from f
	M. N. Velev and R. E. Bryant, Formal verification of superscalar
	D. A. Patterson . CS 252, Graduate Computer Architecture . Univ.
	J. P. Shen and M. Lipasti, Modern Processor Design: Fundamentals
	J. R. Burch, Techniques for verifying superscalar microprocessor

