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Abstract—The paper presents an indirect method to auto-
matically prove liveness for pipelined microprocessors. This
is done by first proving safety—correctness for one step,
starting from an arbitrary initial state that is possibly
restricted by invariant constraints. By induction, the imple-
mentation will be correct for any number of steps; we need to
prove that for some fixed number of steps, n, the implemen-
tation will fetch at least one instruction that will be com-
pleted. This was proved efficiently by using the property of
Positive Equality. Modeling restrictions made the method
applicable to designs with exceptions and branch prediction.
The indirect method and the modeling restrictions resulted in
4 orders of magnitude speedup, enabling the automatic live-
ness proof for dual-issue superscalar and VLIW designs.

I. INTRODUCTION

Previous work on microprocessor formal verification has
almost exclusively addressed the proof of safety—that if a
processor does something during a step, it will do it cor-
rectly—as also observed in [2], while ignoring the proof of
liveness—that a processor will complete a new instruction
after a finite number of steps. Several authors used theo-
rem proving to check liveness [11][12][13][15][18][20]
[24][26], but invested extensive manual work. This paper
is the first to automatically prove liveness for pipelined
processors, including models with exceptions and branch
prediction.

In the current paper, the implementation and specifica-
tion are described in the high-level hardware description
language AbsHDL [32], based on the logic of Equality
with Uninterpreted Functions and Memories (EUFM) [6].
In EUFM, word-level values are abstracted with terms
(see Section IV) whose only relevant property is that of
equality with other terms. Restrictions on the style for
describing high-level processors [27][28] reduced the
number of terms that appear in both positive and negated
equality comparisons—and are so called g-terms (for gen-
eral terms)—and increased the number of terms that
appear only in positive polarity—and are so called p-terms
(for positive terms). The property of Positive Equality
[27][28] allowed us to treat syntactically different p-terms
as not equal when evaluating the validity of an EUFM for-
mula, thus achieving significant simplifications and orders
of magnitude speedup. (See [4] for a correctness proof.)

The formal verification is done with an automatic tool
flow, consisting of: 1) the term-level symbolic simulator
TLSim [32], used to symbolically simulate the implemen-
tation and specification, and produce an EUFM correct-
ness formula; 2) the decision procedure EVC [32] that
exploits Positive Equality and other optimizations to trans-
late the EUFM correctness formula to an equivalent Bool-
ean formula, which has to be a tautology in order for the
implementation to be correct; and 3) an efficient SAT-
checker. This tool flow was used at Motorola [14] to for-
mally verify a model of the M•CORE processor, and
detected bugs. The tool flow was also used in an advanced
computer architecture course [34][36], where students
designed and formally verified pipelined processors.
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II. DEFINITION OF SAFETY AND LIVENESS

The formal verification is done by correspondence check-
ing—comparison of a pipelined implementation against a
non-pipelined specification. The abstraction function, Abs,
maps an implementation state to an equivalent specifica-
tion state, and is computed by flushing [6]—feeding the
implementation pipeline with bubbles (combinations of
control signals that do not modify architectural state) until
all partially executed instructions are completed. The
safety property (see Fig. 1) is expressed as a formula in the
logic of EUFM, and checks that one step of the implemen-
tation corresponds to between 0 and k steps of the specifi-
cation, where k is the issue width of the implementation.
FImpl is the transition function of the implementation, and
FSpec is the transition function of the specification. We
will refer to the sequence of first applying Abs and then
FSpec as the specification side of the diagram in Fig. 1, and
to the sequence of first applying FImpl and then Abs as the
implementation side.

Fig. 1.  The safety correctness property for an implementation processor
with issue width k: one step of the implementation should correspond to
between 0 and k steps of the specification, when the implementation
starts from an arbitrary initial state QImpl that is possibly restricted by a
set of invariant constraints.

The safety property is a proof by induction, since the
initial implementation state, QImpl, is completely arbitrary.
If the implementation is correct for all transitions that can
be made for one step from an arbitrary initial state, then
the implementation will be correct for one step from the
next implementation state, Q′Impl, since that state will be a
special case of an arbitrary state as used for the initial
state, and so on for any number of steps. For some proces-
sors, e.g., where the control logic is optimized by using
unreachable states as don’t-care conditions, we might have
to impose a set of invariant constraints for the initial state
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in order to exclude unreachable states. Then, we need to
prove that those constraints will be satisfied in the imple-
mentation state after one step, Q′Impl, so that the correct-
ness will hold by induction for that state, and so on for all
subsequent states. The reader is referred to [1][2] for a dis-
cussion of correctness criteria.

To illustrate the safety property in Fig. 1, let the imple-
mentation and specification have three architectural state
elements—Program Counter (PC), Register File, and Data
Memory. Let PCi

Spec, RegFilei
Spec, and DMemi

Spec be the
state of the PC, Register File, and Data Memory, respec-
tively, in specification state Qi

Spec (i = 0, ..., k) along the
specification side of the diagram. Let PC*

Spec, Reg-
File*

Spec, and DMem*
Spec be the state of the PC, Register

File, and Data Memory in specification state Q*
Spec,

reached after the implementation side of the diagram.
Then, each disjunct equalityi (i = 0, ..., k) is defined as: 

equalityi  ←  pci ∧  rfi ∧  dmi,

where 
pci  ←  (PCi

Spec = PC*
Spec), 

rfi  ←  (RegFilei
Spec = RegFile*

Spec), 
dmi  ←  (DMemi

Spec = DMem*
Spec).

That is, equalityi is conjunction of pair-wise equality com-
parisons for all architectural state elements, thus ensuring
that they are updated in synchrony by the same number of
instructions. In processors with more architectural state
elements, an equality comparison is conjuncted similarly
for each additional state element. Hence, for this imple-
mentation processor, the safety property is:
pc0 ∧  rf0 ∧  dm0  ∨  pc1 ∧  rf1 ∧  dm1  ∨ ... ∨  pck ∧  rfk ∧  dmk  =  true.

We can prove liveness by a modified version of the
safety correctness criterion—by symbolically simulating
the implementation for a finite number of steps, n, and
proving that:

equality1  ∨  equality2  ∨  . . . ∨  equalityn × k   =   true (1)

where k is the issue width of the implementation. The for-
mula proves that n steps of the implementation match
between 1 and n × k steps of the specification, when the
implementation starts from an arbitrary initial state that
may be restricted by invariant constraints. Note that (1)
guarantees that the implementation has made at least one
step, while the safety correctness criterion allows the
implementation to stay in its initial state when formula
equality0 (checking whether the implementation matches
the initial state of the specification) is true. The correct-
ness formula is generated automatically in the same way
as the formula for safety, except that the implementation
and the specification are symbolically simulated for many
steps, and formula equality0 is not included. As in the for-
mula for safety, every formula equalityi is the conjunction
of equations, each comparing corresponding states of the
same architectural state element. That is, formula (1) con-
sists of top-level positive equations that are conjuncted
and disjuncted but not negated, allowing us to exploit Pos-
itive Equality when proving liveness. The minimum num-
ber of steps, n, to symbolically simulate the
implementation, can be determined experimentally, by
trial and error, or can be provided by the user, based on
knowledge about the stalling and squashing behavior of
the implementation (see Section V).

The contribution of this paper is a method to indirectly
prove liveness (1) by first proving safety, thus inductively
the implementation correctness for n steps, and then using
Positive Equality to prove that equality0 will be false after
n steps. For the latter proof, every PC transition is made
unique for each instruction; the logic comparing actual and
predicted branch targets to find mispredictions is
abstracted; and the specification is enriched with the
abstract mechanism for correcting branch mispredictions.
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III. RELATED WORK

Safety and liveness were first defined by Lamport [16].
Most of the previous research on formal verification of
processors has addressed only safety, as also observed in
[2]. The most popular theorem-proving approach for prov-
ing microprocessor liveness is to prove that for each pipe-
line stage that can get stalled, if the stalling condition is
true then the instruction initially in that stage will stay
there, and if the stalling condition is false then the instruc-
tion will advance to the next stage. It is additionally
proved that if the stalling condition is true, then it will
eventually become false, given the implementation of the
control logic and fairness assumptions about arbiters.
Liveness was proved in this way by Srivas and Miller [26],
Hosabettu et al. [11], Jacobi and Kröning [12], Müller and
Paul [20], Kröning and Paul [13], and Lahiri et al. [15].
Sawada [24] similarly proved that if an implementation is
fed with bubbles, it will eventually get flushed. However,
note that a buggy processor, where the architectural state
elements are always disabled, may pass the check that stall
signals will eventually become false, and that the pipeline
will eventually get flushed, as well as satisfy the safety
correctness criterion (where formula equality0 will be
true), but will fail the liveness check done here. Using a
different theorem-proving approach, Manolios [18] also
accounted for liveness by proving that a given state can be
reached from a flushed state after an appropriate number
of steps. McMillan [19] used circular compositional rea-
soning to check the liveness of a reduced model of an out-
of-order processor with ALU and move instructions. His
method requires the manual definition of lemmas and
case-splitting expressions; the manual reduction of the
proof to one that involves two reservation stations and one
register; and the manual introduction of fairness assump-
tions for the abstracted arbiter. The approaches in the
above nine papers will require significant manual work to
apply to the models that are automatically checked for
both safety and liveness in the current paper. Aagaard et al.
[1] formulated a liveness condition, but did not present
results.

Henzinger et al. [10] also enriched the specification, but
had to do that even to prove safety for a 3-stage pipeline
with ALU and move instructions.

Biere et al. [3] enriched a model with a witnessing
mechanism that records whether a property has been satis-
fied, thus allowing them to model check liveness of a com-
munication protocol as safety. Pnueli et al. [21] proved the
liveness of mutual-exclusion algorithms by deriving an
abstraction, and enriching it with conditions that allowed
the efficient liveness check in a way that implies the live-
ness of the original model.

IV. EUFM AND POSITIVE EQUALITY

The syntax of EUFM [6] includes terms and formulas.
Terms are used to abstract word-level values of data, regis-
ter identifiers, memory addresses, as well as the entire
states of memory arrays. A term can be an Uninterpreted
Function (UF) applied to a list of argument terms, a term
variable, or an ITE operator selecting between two argu-
ment terms based on a controlling formula, such that
ITE(formula, term1, term2) will evaluate to term1 if for-
mula = true, and to term2 if formula = false. The syntax
for terms can be extended to model memories by means of
the functions read and write [6][31]. Formulas are used to
model the control path of a microprocessor, and to express
the correctness condition. A formula can be an Uninter-
preted Predicate (UP) applied to a list of argument terms, a
Boolean variable, an ITE operator selecting between two
argument formulas based on a controlling formula, or an
equation (equality comparison) of two terms. Formulas



can be negated and combined by Boolean connectives. We
will refer to both terms and formulas as expressions. UFs
and UPs are used to abstract the implementation details of
functional units by replacing them with “black boxes” that
satisfy no particular properties other than that of functional
consistency—that the same combinations of values to the
inputs of the UF (UP) produce the same output value.

The efficiency from exploiting Positive Equality is due
to the observation that the truth (validity) of an EUFM for-
mula under a maximally diverse interpretation of the p-
terms implies the truth of the formula under any interpreta-
tion. A maximally diverse interpretation is one where the
equality comparison of a term variable with itself evalu-
ates to true; that of a p-term variable with a syntactically
distinct term variable (a p-equation) evaluates to false; and
that of a g-term variable with a syntactically distinct g-
term variable (a g-equation) could evaluate to either true
or false, and can be encoded with Boolean variables, e.g.,
as done in [8][22][35].

To model branch prediction, the mechanism for correct-
ing mispredictions is fully implemented, while the branch
predictor is abstracted with a generator of arbitrary values
[29] that makes non-deterministic predictions on every
clock cycle, thus allowing us to prove correctness of the
processor for any actual implementation of the branch pre-
dictor. To model exceptions raised by a functional unit
[29], we add an uninterpreted predicate that has the same
inputs as the functional unit, and output that indicates
whether an exception is raised; additional architectural
state elements keep the exception status.

V. PROCESSOR BENCHMARKS AND THEIR LIVENESS

The benchmarks include 1×DLX-C, a single-issue pipe-
lined DLX [9]; 1×DLX-C-BP-EX, an extension with both
branch prediction and exceptions; 2×DLX-CA, a dual-
issue superscalar version with one complete pipeline that
can execute all instruction types, and a second pipeline
that can execute only ALU instructions; 2×DLX-CC, a
dual-issue model with two complete pipelines; and ver-
sions with both branch prediction and exceptions, 2×DLX-
CA-BP-EX and 2×DLX-CC-BP-EX. The reader is
referred to [29] for detailed descriptions of these 6 models.
The most complex benchmarks are variants of a VLIW
architecture [30][33]: 9VLIW implements predicated exe-
cution, register remapping, and advanced loads [25]; and
9VLIW-BP-EX is an extension with both branch predic-
tion and exceptions. All models have 5 pipeline stages:
Fetch, Decode, Execute, Memory, and Write-Back.

 To illustrate the choice of number of steps, n, for the
liveness proof of 1×DLX-C, note that the longest delay
before this model fetches a new instruction that is guaran-
teed to be completed is 5 cycles. This will happen if the
Decode stage contains a branch that will be taken, but has
a data dependency on a load in Execute. The branch will
be stalled for one cycle, due to the load-interlock [9]; then
it will take a cycle to go through Decode; another to go
through Execute, where the branch target and direction
will be computed; a fourth cycle to go through Memory,
updating the PC with the branch target, and squashing all
subsequent instructions; and a fifth cycle to fetch a new
instruction that is guaranteed to be completed, since the
pipeline will be empty by then. Hence, a correct 1×DLX-C
has to be symbolically simulated for 5 steps to fetch a new
instruction that is guaranteed to be completed. In the case
of 1×DLX-C-BP-EX, where exceptions are resolved in the
Write-Back stage by squashing all subsequent instructions
and updating the PC with an exception-handler address, it
takes an extra cycle for an excepting instruction to get to
Write-Back, so that this model has to be simulated for 6
steps to fetch a new instruction that will be completed.
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The dual-issue superscalar models without exceptions
will have to be simulated for 7 cycles to fetch a new
instruction that is guaranteed to be completed. This will
happen if the older instruction in Decode has a data depen-
dency on a load in Execute, so that both instructions in
Decode will be stalled during the first cycle (the supersca-
lar models have in-order issue); if the older instruction in
Decode is a load that provides data for the younger
instruction in that stage, then the younger instruction will
be shifted to the first slot in Decode during the second
cycle, and then stalled in that slot during the third cycle;
and if that younger instruction is a branch that is taken/
mispredicted and not squashed, it will take another 4
cycles (as in the single-issue models) to fetch a new
instruction that is guaranteed to be completed. Since a
dual-issue processor can fetch and complete up to 2
instructions per cycle, it could complete up to 14 instruc-
tions over 7 steps, and so has to be compared for a match
with between 1 and 14 specification steps. In the case of
2×DLX-CA-BP-EX and 2×DLX-CC-BP-EX, exceptions
are again resolved in the Write-Back stage that takes an
extra cycle to reach, so that these models have to be sym-
bolically simulated for 8 cycles to fetch a new instruction
that is guaranteed to be completed, and can match between
1 and 16 specification steps.

VI. PROVING LIVENESS INDIRECTLY

To avoid the validity checking of the monolithic liveness
correctness formula (1), which can get very big for com-
plex processors, we can prove liveness indirectly:

THEOREM 1. If after n implementation steps,
equality0 = false under a maximally diverse interpretation
of the p-terms, and the safety property is valid, then the
liveness property is valid under any interpretation.

Proof: If the safety property is valid, by induction over n
implementation steps, it follows that:

equality0  ∨  equality1  ∨  . . . ∨  equalityn × k   =   true (2)

under any interpretation, including a maximally diverse
interpretation of the p-terms. Then, if after n implementa-
tion steps equality0 = false under a maximally diverse
interpretation of the p-terms, it follows that:
equality1  ∨  . . . ∨  equalityn × k   =   true (3)

under a maximally diverse interpretation of the p-terms.
Since formula (3) is the same as the liveness condition (1),
then from the property of Positive Equality, it follows that
the liveness condition (1) will be valid under any interpre-
tation. �

Note that under an interpretation that is not a maximally
diverse interpretation of the p-terms, the condition
equality0 may become true, e.g., in the presence of soft-
ware loops, or if multiple instructions raise the same
exception (in the benchmarks, a raised exception did not
suppress later ones) and so update the PC with the same
exception-handler address. However, the liveness condi-
tion (1) will be still valid, since it can only get “bigger”
under an interpretation that is not a maximally diverse
interpretation of the p-terms (and that is how it was indi-
rectly proved valid under any interpretation).

Since equality0 is conjunction of the pair-wise equality
comparisons for all architectural state elements, it suffices
to prove that any of those equality comparisons is false
under a maximally diverse interpretation of the p-terms. In
particular, we can prove that pc0 = false, where pc0 is the
equality comparison between the PC state after the imple-
mentation side of the diagram (see Fig. 1), and the PC that
is part of the initial specification state. Note that choosing
the Register File or the Data Memory instead would not



work, since they are not updated by each instruction, and
so there can be infinitely long instruction sequences that
do not modify these architectural state elements, making it
impossible to prove that a given (finite) number of steps
will always result in at least one update. For the bench-
marks from Section V, the PC is the only state element that
is updated by every instruction.

Note that proving forward progress—that the PC is
updated at least once after n implementation steps, i.e.,
proving pc0 = false under a maximally diverse interpreta-
tion of the p-terms—is done without the specification.
However, the specification is used to prove safety, thus
inductive correctness for any number of steps.

VII. MODELING RESTRICTIONS FOR PROCESSORS WITH 
EXCEPTIONS AND BRANCH PREDICTION

In order to apply Theorem 1 to processors with exceptions
and branch prediction, we impose two modeling restric-
tions. The goal is: 1) to make each PC transition unique for
every instruction by introducing witness functions—UFs
that take as arguments the instruction opcode and the orig-
inal term for one of the next PC values, and produce a
unique new term used to update the PC in the modified
design, thus witnessing each PC transition for each
instruction; and 2) to have the PC updated with p-terms
only. Such restrictions allow us to use Positive Equality to
efficiently prove forward progress.

Unique PC transitions. In models without branch predic-
tion, the symbolic values used to update the PC are:
SequentialPC, pointing to the sequential instruction and
obtained after incrementing the PC, where the increment-
ing is abstracted with a UF; Target, the target address for a
jump or a branch, as computed by a functional unit
abstracted with a UF; exception-handler addresses, each
modeled with a term variable [29]; and the Exception PC
(EPC) that contains the address of the last excepting
instruction, and is used by return-from-exception instruc-
tions to restart the execution from the last excepting
instruction. With this modeling, the SequentialPC and the
Target are different symbols for each instruction, since
they are produced by UFs that depend on, respectively, the
PC and the opcode that are p-terms. However, the excep-
tion-handler addresses remain the same symbols, and the
EPC can keep its value during the execution of many
instructions (if no exceptions are raised), so that the PC
could be updated with these terms by many instructions,
making it impossible to prove forward progress by proving
pc0 = false, as there is no way to distinguish between
updates with the same term by different instructions. Our
solution is to make the exception-handler addresses and
the EPC unique for each instruction by introducing wit-
ness functions—UFs taking the instruction opcode and an
original term for a next PC value, and producing a new
term used to update the PC. Since the opcodes are p-terms
that are unique for each symbolic instruction, they will
make the outputs of those UFs also unique for each
instruction, thus allowing us to mark each PC transition
for each instruction. If an EUFM formula is valid with
such UFs, the formula will be valid for any functionally
consistent implementation of the UFs, including the origi-
nal one where one of the inputs is directly connected to the
output. These abstractions have to be applied manually to
both the implementation and the specification. In earlier
work [27], the opcode was also used as extra input to UFs
and UPs, resulting in functional non-consistency.

PC updates with p-terms only. In the case of models
with branch prediction, the mechanism for correcting
mispredictions compares the actual and predicted targets
for equality, and the output is used in dual polarity [29]—
positive polarity when updating the PC, and negated polar-
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ity when squashing subsequent instructions—which
makes the actual and predicted targets g-terms. Then, in
formula pc0, i.e., (PC0

Spec = PC*
Spec), the term after the

implementation side, PC*
Spec, could equal the term after

the specification side, PC0
Spec, when software loops are

executed, making it impossible to prove pc0 = false under
a maximally diverse interpretation of the p-terms. Our
solution is to abstract the equality comparison between the
actual and predicted targets with a UP that also takes the
opcode as input. Then, the actual and predicted targets
become p-terms. Normally, a specification processor does
not require branch prediction, since the actual branch out-
come is known by the end of a step, just in time to fetch
the correct instruction in the next step. However, the
abstracted branch-target equality in the implementation
requires that the specification be enriched with that
abstraction, and be extended with a branch prediction
mechanism in order to produce identical PC updates. Oth-
erwise, the equations comparing PC states in the EUFM
correctness formulas, will not be able to correlate the pre-
dicted targets from the implementation and the actual tar-
gets from the specification. In order to enrich the
specification with branch prediction, and synchronize the
predictions with those made by the implementation for the
same instructions, the predicted direction is produced by a
UP and the predicted target by a UF, both having the
opcode as input. These UP and UF are introduced in both
the implementation and the specification. Since the
opcodes are p-terms, each opcode will be mapped to a new
Boolean variable for the predicted direction, and a new
term variable for the predicted target, so that the predic-
tions will still be arbitrary. For example, let the original
circuit for the next PC value in the specification be:
use_target ← is_Jump  ∨   is_Branch ∧  taken_branch
nextPC ← ITE(use_target, Target, SequentialPC)

where control bits is_Jump and is_Branch indicate a jump
and a branch; taken_branch is the actual direction of a
branch; Target is the actual target; and SequentialPC is the
sequential value of the PC. Then, the enriched specifica-
tion will have the following circuit for the next PC value:
use_target ← is_Jump  ∨   is_Branch ∧  taken_branch
nextPC_old ← ITE(use_target, Target, SequentialPC)
PredictedTarget← GetPredictedTarget(Op)
predict_taken ← GetPredictedDirection(Op)
equal_targets ← EqualTargets(Op, PredictedTarget, Target)
use_pred_target← equal_targets ∧  (is_Jump

∨  is_Branch ∧  taken_branch ∧  predict_taken)
nextPC ← ITE(use_pred_target, 

PredictedTarget, nextPC_old)

where GetPredictedTarget() is a UF that maps the opcode
to a predicted target; GetPredictedDirection() is a UP that
maps the opcode to a predicted direction; EqualTargets()
is the UP that abstracts the equality comparison between
the actual and predicted branch targets. Hence, if the pre-
diction is correct—based on UP EqualTargets()—the next
PC value of the specification will be the predicted target,
PredictedTarget; otherwise, the original next value,
nextPC_old. It can be proved that if EqualTargets(Op,
PredictedTarget, Target) is replaced with the original
equation (PredictedTarget = Target), then nextPC =
nextPC_old, i.e., the behavior will be the same as in the
original specification. This equivalence proof requires a
positive equality comparison, and can be done with the
decision procedure EVC [32]. The resulting Boolean cor-
rectness formula had 5 variables, its negation had 16 CNF
variables and 40 clauses, and was proved unsatisfiable in
0.001 seconds by the SAT-checker Siege [23]. As a result
of abstracting the branch-target equation with a UP, the
branch targets become p-terms, and a Boolean variable is
used to encode only each unique pair of actual and pre-
dicted targets for each opcode.



THEOREM 2. If the implementation is correct after the
equality comparator between actual and predicted branch
targets is abstracted with a UP in the mechanism for cor-
recting branch mispredictions, and after the specification
is enriched with branch prediction based on the same UP,
then the original implementation is also correct with
respect to the original specification.

Proof: If the EUFM correctness formula is valid when the
equation between actual and predicted branch targets is
abstracted with a UP in the mechanism for correcting
branch mispredictions in the implementation, and when
the specification is enriched with branch prediction based
on the same UP, then the EUFM correctness formula will
be valid for any functionally consistent implementation of
that UP, including the original equation that turns the mod-
ified implementation and specification into their original
versions. �

VIII. RESULTS

Table I summarizes the results from formally verifying
safety of the benchmarks, after applying the modeling
restrictions. The eij Boolean variables [8] encode g-equa-
tions, with some of those variables added in order to
enforce the property of transitivity of equality. This prop-
erty was enforced in EVC [32] by triangulating the eij-
comparison graph [5]—where each edge represents an
equality comparison between a pair of g-term variables—
adding extra eij variables in a greedy manner, and impos-
ing transitivity constraints for each triangle. Transitivity of
equality constraints were included in all CNF formulas
generated by EVC, although only needed for processors
having branch prediction, and designed without modeling
restrictions. The reader is referred to [33] for the transla-
tion to CNF format. All benchmarks were formally veri-
fied by computing the abstraction function with controlled
flushing [7], where the user provides a flushing schedule
that eliminates the triggering of stalling conditions, thus
simplifying the correctness formula. The reported time is
the sum of the TLSim, EVC, and SAT-checking times.
SAT-checking was done with Siege [23]—one of the win-
ners in the SAT’03 competition [17]. The experiments
were conducted on a Dell OptiPlex GX260 having a 3.06-
GHz Intel Pentium 4 processor with a 512-KB on-chip L2-
cache, 2 GB of memory, and running Red Hat Linux 9.

As Table I shows, proving safety of the benchmarks,
designed with the modeling restrictions, took between
0.08 and 25 seconds. The Boolean correctness formulas
had between 67 and 3,094 Boolean variables; between 363
and 13,565 CNF variables; and between 1,825 and
203,166 CNF clauses. Without modeling restrictions, the
safety proofs for these benchmarks required similar verifi-
cation times.

Results from the monolithic proof of liveness, based on

TABLE I 
PROVING SAFETY, WITH THE MODELING RESTRICTIONS

Processor Impl
Steps

Match-
ing

Spec
Steps

Boolean 
Variables

CNF
Time
[sec]

eij Total Vars Clauses

1×DLX-C 1 0–1 30 67 363 1,825 0.08

1×DLX-C-BP-EX 1 0–1 36 84 425 2,225 0.08

2×DLX-CA 1 0–2 179 241 1,475 13,558 0.33

2×DLX-CA-BP-EX 1 0–2 183 310 2,350 20,875 0.49

2×DLX-CC 1 0–2 183 257 1,823 17,200 0.63

2×DLX-CC-BP-EX 1 0–2 185 335 2,963 27,575 1.12

9VLIW 1 0–1 2,450 2,688 11,722 158,913 16

9VLIW-BP-EX 1 0–1 2,746 3,094 13,565 203,166 25
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criterion (1)—without the modeling restrictions—are pre-
sented in Table II. The verification time was between 4
and 2,605 seconds for the single-issue benchmarks, but
more than 24 hours for the dual-issue and VLIW bench-
marks. The Boolean correctness formulas had between
439 and 26,505 Boolean variables; between 6,129 and
316,869 CNF variables; and between 65,114 and
7,744,554 CNF clauses.

Table III summarizes the benefit of modeling restric-
tions when proving liveness monolithically. For the most
complex single-issue benchmark, 1×DLX-C-BP-EX, the
Boolean variables were reduced from 919 to 674; the CNF
variables from 24,104 to 14,628; the CNF clauses from
339,857 to 161,477 (more than 2×); and the SAT-checking
time from 2,605 seconds to 32 seconds (81×). However,
the modeling restrictions did not help with the dual-issue
and VLIW designs—the Boolean correctness formulas
were smaller (up to 2.5×), but the verification still did not
complete in 24 hours. Compared to the safety proof for
these benchmarks (see Table I), the monolithic liveness
proof resulted in an order of magnitude increase in Bool-
ean variables, and up to two orders of magnitude increase
in CNF variables and clauses, as both the implementation
and the specification were symbolically simulated 5–8
times longer, thus generating more complex formulas.

Table IV presents results from proving pc0 = false under
a maximally diverse interpretation of the p-terms. Then,
from Theorem 1, if the safety property is valid (see Table
I), the liveness property follows indirectly. As Table IV
shows, the indirect method enabled the liveness check for
all benchmarks. While the monolithic proof of liveness

TABLE II 
MONOLITHIC PROOF OF LIVENESS, WITHOUT MODELING RESTRICTIONS

Processor
Impl
Steps

Match-
ing

Spec
Steps

Boolean 
Variables CNF

Time 
[sec]eij Total Vars Clauses

1×DLX-C 5 1–5 346 439 6,129 65,114 4

1×DLX-C-BP-EX 6 1–6 734 919 24,104 339,857 2,605

2×DLX-CA 7 1–14 2,948 3,170 115,047 2,148,916 >24h

2×DLX-CA-BP-EX 8 1–16 4,408 4,832 421,067 8,752,989 >24h

2×DLX-CC 7 1–14 2,950 3,190 135,281 2,552,910 >24h

2×DLX-CC-BP-EX 8 1–16 4,931 5,389 600,699 11,589,467 >24h

9VLIW 5 1–5 24,801 25,391 209,622 6,064,778 >24h

9VLIW-BP-EX 5 1–5 25,669 26,505 316,869 7,744,554 >24h

TABLE III 
MONOLITHIC PROOF OF LIVENESS, WITH MODELING RESTRICTIONS

Processor
Impl
Steps

Match-
ing

Spec
Steps

Boolean 
Variables CNF

Time 
[sec]

eij Total Vars Clauses

1×DLX-Ca

a. The numbers for 1×DLX-C, 2×DLX-CA, 2×DLX-CC, and 9VLIW are the 
same as in Table II, since these benchmarks do not have branch prediction or 
exceptions, and were not affected by the modeling restrictions

5 1–5 346 439 6,129 65,114 4

1×DLX-C-BP-EX 6 1–6 467 674 14,628 161,477 32

2×DLX-CAa 7 1–14 2,948 3,170 115,047 2,148,916 >24h

2×DLX-CA-BP-EX 8 1–16 3,666 4,136 223,495 3,921,442 >24h

2×DLX-CCa 7 1–14 2,950 3,190 135,281 2,552,910 >24h

2×DLX-CC-BP-EX 8 1–16 3,666 4,180 258,650 4,520,133 >24h

9VLIWa 5 1–5 24,801 25,391 209,622 6,064,778 >24h

9VLIW-BP-EX 5 1–5 24,637 25,497 243,258 6,387,669 >24h



(see Table III) did not complete in 24 hours for the dual-
issue superscalar and VLIW processors, the indirect
method takes between 3.9 and 52 seconds for these mod-
els. That is, the speedup is at least 4 orders of magnitude
for the dual-issue superscalar benchmarks, and at least
3 orders of magnitude for the VLIW benchmarks. Note
that we can prove safety and pc0 = false in parallel, if
2 CPUs are available, and so achieve additional speedup
that might be helpful for more complex designs.

The author spent two hours to apply the modeling
restrictions to the 4 benchmarks with branch prediction
and exceptions. However, together with the indirect
method, the restrictions enabled the liveness proof for
dual-issue and VLIW designs, previously requiring more
than 24 hours each.

IX. CONCLUSIONS

To indirectly prove liveness for pipelined processors, and
avoid validity checking of the monolithic criterion, several
modeling restrictions were imposed in order to introduce
witness functions for each PC transition of each instruc-
tion; the equality comparator between actual and predicted
branch targets, used in the circuitry for correcting branch
mispredictions, was abstracted with an uninterpreted pred-
icate, thus turning the targets into p-terms; and the specifi-
cation was enriched with a branch prediction mechanism,
based on the same abstractions as in the implementation.
These techniques resulted in PC state that consists of only
p-terms, allowing the use of Positive Equality to effi-
ciently prove that the PC has been modified after a finite
number of implementation steps. When this result is com-
bined with validity of the safety condition, we get an indi-
rect proof of liveness that resulted in 4 orders of
magnitude speedup, enabling the liveness proof for dual-
issue superscalar and VLIW benchmarks.
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